What do hypotheses, theories, and laws have in common?

  1. 1.

    We will see later on when the focus is on the test of hypotheses that this is the so-called “alternative hypothesis”, the hypothesis we are interested in and that motivates the study. The “null hypothesis” here would be that the behaviour of the dogs and monkeys in the ashram is not different from dogs and monkeys who do not frequent the ashram.

  2. 2.

    It should be noted here that Einstein did not just formulate his theory (which, in fact was a hypothesis that later became accepted as a theory) on the basis of intuition; his formulation of relativity theory was preceded by the Michelson-Morley experiment on the velocity of light.

  3. 3.

    The term “model”, which we have met several times until now, is often used interchangeably with “theory”, although it most often refers to a representation of a theory. In the case of many of the natural sciences, this representation is most often in the form of a mathematical model, i.e. a system of equations representing the interrelationships between variables. The term “model” often refers as well to physical or pictorial representations. Examples could be a physical structure representing a geocentric model of the universe or a visual model created on a computer (and generated by a mathematical model) of the double helix of DNA with its two polynucleotide strands woven around each other and running in opposite directions.

  4. 4.

    Having just considered an example involving fossils, I am tempted to mention that what is considered by many to be one of, if not the most successful and fundamental theories in the biosciences, that of evolution, is regarded by a number of leading scientists as a research programme rather than a theory. Aside from some of the programme’s underlying partial theories (dealing with such matters as macro- and microevolution and the molecular and genetic basis for the form and function of organisms), it has not been formalized, and there exist significant controversies as to its content and form (e.g. as to whether the development of new organisms has been more or less continuous or whether revolutionary changes such as the sudden development of completely different organisms have occurred)—as well as to whether the programme’s representations of organisms’ abilities to adapt, compete, cooperate and survive in fact represent a teleological perspective on the development of organisms. See e.g. (Depew and Weber 1996) and (Ward and Brownlee 2004).

As I have mentioned in previous posts, I used to work for a textbook company. When I first started, there was a wonderful woman who was the departmental expert on anything related to the nature and process of science. She was the go-to person for all our introductory “this is science, kids!” chapters. When she retired, everyone panicked because we knew that she left behind a tremendous void that, frankly, no one was interested in touching since introductory chapters tend to be both pretty dry and full of pitfalls. Soon enough, however, I was saddled with an introductory chapter for a new environmental science book.

Now as it happens, this turned out to be a wonderful thing for me, because I was able to convince the powers that be to let me collaborate with the people from Understanding Science. The final product was fabulous. We were able to present the true iterative and not-at-all linear nature of science and we tackled quite a few misconceptions in just 24 pages. One of the misconceptions we struggled with the most was this one:

Misconception: With enough evidence, a hypothesis can become a theory, which can become a law.

Correction: Hypotheses and theories are explanations for phenomena that differ in breadth, not necessarily in degree of evidentiary support; Laws are generally descriptions of physical phenomena. 

Let’s first consider hypotheses and theories. A hypothesis is an explanation for a relatively narrow set of phenomena and a theory is an explanation for a relatively wide set of phenomena. Sound arbitrary? Well, to be honest, it is a bit. There is no set “rule” that says, well, this explanation covers 999 phenomena, so it’s a hypothesis, but this explanation covers 1000 phenomena, so it qualifies as a theory!

What do hypotheses, theories, and laws have in common?
Further complicating things is that existing theories can generate new hypotheses. Punctuated equilibrium, for example, is a hypothesis that predicts periods of rapid evolutionary change followed by periods of relative stasis. When proposed by Gould and Eldredge in 1972, it was a new hypothesis, but the hypothesis was spawned from existing evolutionary theory. But wait! Isn’t the theory of natural selection part of evolutionary theory? Can a theory be a subset of a theory? Sure. Like I said, it’s all a bit arbitrary. Evolutionary theory is a big, lovely, over-arching golf umbrella of a theory.

So existing theories can generate new hypotheses, but existing hypotheses can also be rolled up into a new theory. For example, the classic cell theory unites the hypotheses that all living things are composed of cells, that new cells come from existing cells, and that cells are the fundamental unit of structure and function for all of life. Modern cell theory now includes additional hypotheses, such as all cells are biochemically similar, contain heritable genetic information, and are the sites of energy flow.

Now, what about laws? Have you ever noticed that most of the “laws” in science tend to be in the physical sciences and astronomy? There aren’t a lot of “laws” in biology—in fact, I can’t think of any aside from Mendel’s Laws. Why is that? Is it because biology is a “soft science” while physics and astronomy are “hard sciences”? Not at all. It’s because people in those fields really liked the term “law.” No, really. That’s pretty much it. Some books will try and say that laws are descriptions while theories and hypotheses are explanations. Some might try and say that laws extend to situations that can never be tested, or that something is a law when there is math involved. But none of these distinctions really manage to sum up all the different sorts of things we call laws in the sciences.

According to Wikipedia, the following are among the laws in science: Bernoulli’s principle, general relativity, Carnot’s theorem, Maxwell’s equations, and Brewster’s angle. Depending on the book, the Big Bang is a theory or a hypothesis. It’s all a bit confusing and arbitrary. But you know what? It really doesn’t matter. Everything I’ve listed, from punctuated equilibrium to Bernoulli to the Big Bang are all important concepts in science and our understanding of them doesn’t hinge on what label they are given. But three things are important to emphasize in the classroom:

  1. The terms hypothesis, theory, and law have common meanings and scientific meanings. Nothing in science, for example, is “just a theory” because in science, theories are pretty darn impressive—rigorously tested explanations for phenomena really don’t deserve a “just” label! Similarly, while a “law” tells you what behaviors will get you arrested, the role of the ideal gas law is not to punish atoms that do not follow its rules.
  2. All hypotheses, theories, and laws involve facts. Fish appear in the fossil record millions of years before mammals do. A dropped object falls to Earth. A gas expands when temperature rises if pressure is held constant. Fact. Fact. Fact. 
  3. A theory or a law is not better or somehow more substantiated than a hypothesis, and individual hypotheses cannot become theories or laws, no matter how much evidence supports them.

This isn’t a satisfying answer, I know. People—especially scientists—like firm definitions. Science is full of technical terms that we learn to master (or learn to quickly look up on the Internet), and thanks to a mixture of precedent and state standards, many teachers keep making kids learn definitions for theory, law, and hypothesis in the introductory weeks of a new class. I’m not suggesting

What do hypotheses, theories, and laws have in common?
that kids shouldn’t learn what a hypothesis is—of course they should! Forming and testing hypotheses are fundamental parts of any scientific endeavor. But I am suggesting that we be willing to admit that there is often no good reason why something is called a law vs. a theory, or a hypothesis vs. a theory—and that’s okay. Which is more important? Figuring out why it’s Mendel’s Laws and not Mendel’s Hypotheses, or being able to explain and predict patterns of inheritance? I vote for the latter. 

In general, a scientific law is the description of an observed phenomenon. It doesn't explain why the phenomenon exists or what causes it. The explanation for a phenomenon is called a scientific theory. It is a misconception that theories turn into laws with enough research.

"In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology in India. "From there, scientists can then ask the questions, 'Why and how?'" 

Difference between a scientific theory and a scientific law

Many people think that if scientists find evidence that supports a hypothesis, the hypothesis is upgraded to a theory, and if the theory is found to be correct, it is upgraded to a law. That is not how it works, though. Facts, theories and laws — as well as hypotheses — are separate elements of the scientific method. Though they may evolve, they aren't upgraded to something else.

"Hypotheses, theories and laws are rather like apples, oranges and kumquats: One cannot grow into another, no matter how much fertilizer and water are offered," according to the University of California, Berkeley (opens in new tab). A hypothesis is a potential explanation of a narrow phenomenon; a scientific theory is an in-depth explanation that applies to a wide range of phenomena. A law is a statement about an observed phenomenon or a unifying concept, according to Kennesaw State University (opens in new tab).

"There are four major concepts in science: facts, hypotheses, laws and theories," Coppinger told Live Science. 

Though scientific laws and theories are supported by a large body of empirical evidence that is accepted by the majority of scientists within that area of scientific study, and help to unify that body of data, they are not the same thing.

"Laws are descriptions — often mathematical descriptions — of natural phenomena for example, Newton's Law of Gravity or Mendel's Law of Independent Assortment. These laws simply describe the observation. Not how or why they work," Coppinger said.

Coppinger pointed out that the law of gravity was discovered by Isaac Newton in the 17th century. This law mathematically describes how two different bodies in the universe interact with each other. However, Newton's law doesn't explain what gravity is or how it works. It wasn't until three centuries later, when Albert Einstein developed the theory of Relativity, that scientists began to understand what gravity is and how it works. 

What do hypotheses, theories, and laws have in common?

Mendelian Inheritance shown with a pea model. (Image credit: Shutterstock) (opens in new tab)

"Newton's law is useful to scientists in that astrophysicists can use this centuries-old law to land robots on Mars. But it doesn't explain how gravity works, or what it is. Similarly, Mendel's Law of Independent Assortment describes how different traits are passed from parent to offspring, not how or why it happens," Coppinger said. Gregor Mendel discovered that two different genetic traits would appear independently of each other in different offspring. "Yet, Mendel knew nothing of DNA or chromosomes. It wasn't until a century later that scientists discovered DNA and chromosomes — the biochemical explanation of Mendel's laws. It was only then that scientists, such as T.H. Morgan, working with fruit flies, explained the Law of Independent Assortment using the theory of chromosomal inheritance. Still today, this is the universally accepted explanation (theory) for Mendel's Law," Coppinger said.

The difference between scientific laws and scientific facts is a bit harder to define, though the definition is important. Facts are simple, one-off observations that have been shown to be true. Laws are generalized observations about a relationship between two or more things in the natural world based on a variety of facts and empirical evidence, often framed as a mathematical statement, according to NASA. 

For example, "Apples fall down from this apple tree" is considered a fact because it is a simple statement that can be proven. "The strength of gravity between any two objects (like an apple and the Earth) depends on the masses of the objects and the distance between them" is a law because it describes the behavior of two objects in a certain circumstance. If the circumstance changes, then the implications of the law would change. For example, if the apple and the Earth shrank to a subatomic size, they would behave differently.

Scientific laws and mathematics

What do hypotheses, theories, and laws have in common?

(Image credit: Shutterstock.) (opens in new tab)

Many scientific laws can be boiled down to a mathematical equation. For example, Newton's Law of Universal Gravitation states: 

Fg = G (m1 ∙ m2) / d2

Fg is the force of gravity; G is the universal gravitational constant, which can be measured; m1 and m2 are the masses of the two objects, and d is the distance between them, according to The Ohio State University (opens in new tab).

Scientific laws are also often governed by the mathematics of probability. "With large numbers, probability always works. The house always wins," said Sylvia Wassertheil-Smoller, a professor at Albert Einstein College of Medicine in New York. "We can calculate the probability of an event and we can determine how certain we are of our estimate, but there is always a trade-off between precision and certainty. This is known as the confidence interval. For example, we can be 95% certain that what we are trying to estimate lies within a certain range or we can be more certain, say 99% certain, that it lies within a wider range. Just like in life in general, we must accept that there is a trade-off."

Do laws change?

Just because an idea becomes a law doesn't mean that it can't be changed through scientific research in the future. The use of the word "law" by laymen and scientists differs. When most people talk about a law, they mean something that is absolute. A scientific law is much more flexible. It can have exceptions, be proven wrong or evolve over time, according to the University of California, Berkeley.

"A good scientist is one who always asks the question, 'How can I show myself wrong?'" Coppinger said. "In regards to the Law of Gravity or the Law of Independent Assortment, continual testing and observations have 'tweaked' these laws. Exceptions have been found. For example, Newton's Law of Gravity breaks down when looking at the quantum (subatomic) level. Mendel's Law of Independent Assortment breaks down when traits are "linked" on the same chromosome."

Examples of scientific laws

  • The law of conservation of energy, which says that the total energy in an isolated system remains constant. In other words, energy cannot be created or destroyed, according to Britannica (opens in new tab).
  • The laws of thermodynamics, which deal with the relationships between heat and other forms of energy
  • Newton's universal law of gravitation, which says that any two objects exert a gravitational force upon each other, according to the University of Winnipeg (opens in new tab)
  • Hubble's law of cosmic expansion, which defines a relationship between a galaxy's distance and how fast it's moving away from us, according to astrophysicist Neta A. Bahcall
  • The Archimedes Principle, which states that the buoyant force on an object submerged in a fluid is equal to the weight of the fluid displaced by that object.

Additional resources

  • This resource from the New South Wales Education Standards Authority (opens in new tab) has an in-depth explanation of scientific theories and laws.
  • Find out why a theory can’t evolve into a law in this article from Indiana Public Media (opens in new tab).
  • Watch a video about the difference between a scientific law and a scientific theory from TEDEd. (opens in new tab)

Bibliography

University of California, Berkeley, "​​Misconceptions about science." https://undsci.berkeley.edu/teaching/misconceptions.php

NASA IMAGE Education Center, "Teacher's Guide: Theories, Hypothesis, Laws, Facts & Beliefs." https://www.nasa.gov/pdf/371711main_SMII_Problem23.pdf 

The Ohio State University, "Lecture 18: The Apple and the Moon: Newtonian Gravity." https://www.astronomy.ohio-state.edu/pogge.1/Ast161/Unit4/gravity.html 

Encyclopedia Britannica, "Conservation of energy." November 16, 2021. https://www.britannica.com/science/conservation-of-energy 

University of Winnipeg, "Newton's Law of Gravitation." 1997. https://theory.uwinnipeg.ca/physics/circ/node7.html 

Neta A. Bahcall, "Hubble's Law and the expanding universe," Proceedings of the National Academy of Sciences, Volume 112, March 2015, https://doi.org/10.1073/pnas.1424299112