O que é grandeza vetorial

Uma grandeza é tudo aquilo a que se pode atribuir um valor numérico e uma unidade de medida. Em outras palavras, grandeza é tudo aquilo que pode ser medido. A atribuição de valores para as grandezas é feita por meio de padrões estabelecidos ou regras que podem ser reproduzidas em laboratório. Após os padrões para a determinação das grandezas serem estabelecidos, as unidades de medida são escolhidas.

Na década de 60, existiam grandes quantidades de sistemas e padrões de medida, cada um com suas unidades próprias, o que dificultava, por exemplo, a produção científica, haja vista a complicação de se conhecer todos os padrões e sistemas propostos. Buscando padronizar as unidades de medida das grandezas, a 11ª Conferência Geral de Pesos e Medidas (CGPM) criou o Sistema Internacional de Unidades (SI). O SI estabelece quais são as unidades e os padrões necessários para a determinação de cada medida. Além disso, foram determinadas unidades consideradas fundamentais e, a partir destas, derivam todas as demais. A tabela abaixo mostra as grandezas fundamentais consideradas pelo SI e suas unidades de medida e símbolos.

Podemos citar como exemplo de grandeza derivada a força. A unidade de medida de força é o newton (N), que advém das unidades de comprimento, massa e tempo.

As grandezas escalares são aquelas que podem ser completamente caracterizadas apenas com um número seguido de uma unidade de medida. É o caso, por exemplo, da massa. Ao dizermos que um objeto possui 10 kg, a informação foi completamente passada e não há necessidade de complemento. Assim, podemos entender que essa grandeza é escalar.

Temperatura, massa, tempo, energia, etc., são exemplos de grandezas escalares. O tratamento dessas grandezas é algébrico, isto é, as operações envolvendo grandezas escalares podem ser feitas normalmente.

As grandezas vetoriais precisam de três informações para serem completamente caracterizadas: módulo, direção e sentido. O módulo corresponde ao valor numérico da grandeza; a direção é a reta de atuação (horizontal, vertical e diagonal); e o sentido determina como a grandeza atua em determinada direção (direita, esquerda, para cima etc).

Se dissermos que uma força de 50 N empurrou um objeto, precisamos dizer para onde esse objeto foi empurrado. Ao mostrar apenas o valor numérico, a informação fica incompleta. Podemos afirmar, por exemplo, que uma força de 50 N empurrou um objeto na horizontal e para a direita.

O vetor é o representante das grandezas vetoriais e é quem indica as três características de uma dada grandeza vetorial. A figura abaixo mostra duas forças que atuam sobre um objeto de massa M. A partir dos vetores (setas) que representam as forças F1 e F2, podemos dizer que o movimento é horizontal, para a direita e que F1 > F2. Força, velocidade, aceleração, etc., são exemplos de grandezas vetoriais.

As operações envolvendo esse tipo de grandeza são chamadas de vetoriais. Por isso, nem sempre uma força de 4 N somada à outra força de 4 N resultará em uma força de 8 N. Para saber mais sobre as operações vetoriais, leia os seguintes textos: operações básicas envolvendo vetores, operações com vetores e decomposição de vetores.

São grandezas escalares: Tempo, Temperatura, Volume, Massa, Trabalho de uma Força, etc. Aquelas que necessitam de uma direção e um sentido, além do valor numérico e da unidade de medida, são chamadas de grandezas vetoriais. As grandezas vetoriais são representadas por vetores.

O que não é grandeza?

A partir dessa definição podemos, por exemplo, dizer que o comprimento, a quantidade de matéria e a energia são grandezas físicas, enquanto as notas de uma prova, o preço de um objeto e a intensidade de um sentimento não são. Em contrapartida, os objetos ou fenômenos naturais em si não são grandezas físicas.

Quais as grandezas físicas são vetoriais?

Mais exemplos de grandezas vetoriais são: velocidade, aceleração, campo elétrico e campo magnético, entre outros.

O que é grandeza não física?

Grandezas físicas são aquelas grandezas que podem ser medidas, ou seja, que descrevem qualitativamente e quantitativamente as relações entre as propriedades observadas no estudo dos fenômenos físicos. Grandeza física é diferente de unidade física. Por exemplo: o Porche 911 pode alcançar uma velocidade de 300 km/h.

O que são grandezas Cite exemplos?

Em Física, elas podem ser vetoriais ou escalares, como, por exemplo, o tempo, a massa de um corpo, comprimento, velocidade, aceleração, força, e muitas outras. Grandeza escalar é aquela que precisa somente de um valor numérico e uma unidade para determinar uma grandeza física, um exemplo é a nossa massa corporal.

Quais são as grandezas vetoriais e escalares?

Grandezas escalares são aquelas que podem ser definidas apenas com um valor e sua unidade de medida. Já as grandezas vetoriais necessitam, além do valor e da unidade de medida, informar o sentido e a direção. Elas podem ser representadas por um vetor. Um exemplo de grandeza vetorial é a força.

Qual a descrição de uma imagem vetorial?

Uma imagem vetorial normalmente é composta por curvas, elipses, polígonos, texto, entre outros elementos, isto é, utilizam vetores matemáticos para sua descrição. Desenho vetorial, que se baseia em vetores matemáticos; Raster, que não é mais que a descrição da cor de cada pixel;

Quais são os espaços vetoriais?

Álgebra Linear – Um Livro Colaborativo 5.2 Espaços vetoriais Um espaço vetorial (sobre o conjunto ℝde escalares) é um conjunto Vequipado com as operações de soma de vetores e de multiplicação por escalar e que satisfazem as propriedades usuais dos espaços ℝn.

Por que esses gráficos são baseados em vetores?

Por serem baseados em vetores, esses gráficos geralmente são mais leves (ocupam menos espaço em mídias de armazenamento) e não perdem qualidade ao serem ampliados, já que as funções matemáticas adequam-se facilmente à escala, o que não ocorre com gráficos raster que utilizazam métodos de interpolação na tentativa de preservar a qualidade.

Ouça este artigo:

Algumas grandezas físicas apenas se representam por um número e uma unidade de medida, sendo suficientes para entender a informação transmitida. Um exemplo é a massa: se é dito que alguém possui 60 kg, já está entendido, não é necessário mais informações para entender a medida que foi feita. Estas são as chamadas grandezas escalares, as quais um número e uma unidade de medida já lhe bastam.

Contudo, existem grandezas físicas que exigem um pouco mais de informações. Tomamos como exemplo o deslocamento: dizer que "um carro está a 30 km" não esclarece o fato, pois surgem perguntas sobre qual seria a exata localização, a qual o carro está distante 30 km, se ele está indo ou voltando deste local, enfim, é necessária uma orientação para esclarecer a medida. Estes tipos de grandezas físicas são as grandezas vetoriais. Elas exigem, além do número e a unidade de medida, de uma orientação, ou seja, direção e sentido.

Um vetor é representado geometricamente por uma seta, cujo início e final são mostrados na figura a seguir.

O que é grandeza vetorial

Desta forma, são definidas, na tabela abaixo, algumas direções e sentidos como exemplos para representar um vetor.

Direção Sentido Vetor
vertical para cima
vertical para baixo
horizontal esquerda
horizontal direita
a 45º da horizontal anti-horário
(nordeste)

O vetor oposto é aquele que possui o sentido contrário a um determinado vetor na mesma direção. Na tabela, o primeiro e o segundo vetor são opostos. O terceiro e o quarto vetor também são.

O vetor nulo é representado por um ponto, pois não há dimensão para este vetor, sendo que seu início coincide com seu fim. Um vetor não nulo possui dimensão (ou módulo). A dimensão é o número que determina a quantidade na grandeza (número 5 no exemplo a seguir). Uma grandeza vetorial, velocidade v, por exemplo, é representada com uma flecha acima da letra v. Observe o exemplo seguinte.

A velocidade de 5 m/s possui dimensão ou módulo igual a 5.

O que é grandeza vetorial

A soma de vetores é feita conforme os passos:

1) colocam-se os vetores a serem somados na ordem: a origem do segundo vetor no final do primeiro, a origem do terceiro vetor no final do segundo, assim por diante;

2) o vetor soma será o vetor que liga a origem do primeiro vetor com o final do último vetor, neste caso, o último é o terceiro.

O que é grandeza vetorial

O que é grandeza vetorial

Quando um dos vetores for oposto na soma, unirá o final do segundo com o final do primeiro, ou início do segundo com o início do primeiro (ver caso 180º na tabela adiante).

Veja na tabela abaixo três tipos de operações comuns com vetores.

Ângulo entre os vetores Operação Vetor Soma
Soma

(3 + 1 = 4)

O que é grandeza vetorial
90º Teorema de Pitágoras

soma² = 3² + 4² soma² = 9 + 16 soma² = 25

soma = 5

O que é grandeza vetorial
180º subtração (o vetor oposto 1 é negativo)
(3 – 1 = 2)
O que é grandeza vetorial

Quando for um ângulo qualquer (α) entre os vetores a serem somados, utiliza-se a regra do paralelogramo. Nesta regra, colocam-se os vetores na ordem de soma. O vetor que fecha é o vetor soma (diagonal do paralelogramo). Veja a figura e a equação para o caso da soma de dois vetores:

O que é grandeza vetorial

Pela Lei dos Cossenos:

Todo vetor em um plano pode ser representado por suas componentes. Vamos imaginar uma situação para que fique claro este conceito. Suponhamos que uma pessoa, que está no ponto A em uma praça, deseja chegar no ponto C, na mesma praça. Ela pode fazer este caminho pelas laterais da praça ou pela diagonal que une diretamente os dois pontos A e C. Inclusive, está é uma característica importante dos vetores: unir dois pontos de forma direta, pelo menor caminho, sem fazer curvas ou desvios!

O que é grandeza vetorial

Assim, são três os caminhos que poderiam ser feitos, de acordo com a figura, se levarmos em conta apenas os pontos A, B, C e D: o segmento AB mais o segmento BC, o segmento AD mais o segmento DC e, diretamente, o segmento AC.

Quando falamos de componentes de vetores, temos

  • 1) segmento AB (ou DC): componente vertical (no eixo y) do vetor AC.
  • 2) segmento BC (ou AD): componente horizontal (no eixo x) do vetor AC.

Isso ocorre com qualquer vetor em um plano. Se o vetor estiver em um espaço tridimensional, serão três componentes, em x, y e z, no espaço cartesiano. As componentes de um vetor também são chamadas de projeções deste vetor, nos respectivos planos cartesianos.