Na figura a seguir onde está assinalado a medida de cada ângulo do polígono determine o valor de x

As tabelas trigonométricas relacionam um ângulo aos seus respectivos valores de seno, cosseno e tangente. Elas foram criadas para facilitar quaisquer cálculos envolvendo trigonometria, pois, fazendo uso de uma dessas tabelas, basta procurar os valores numéricos de seno, cosseno e tangente referentes a um ângulo qualquer.

Seno, cosseno e tangente são resultados da divisão dos comprimentos de dois lados de um triângulo retângulo. Para definir essas divisões, é necessário saber que, em um triângulo retângulo, o lado oposto ao ângulo de 90º é chamado de hipotenusa e que os outros dois lados são chamados de catetos.

Tomando o ângulo θ de um triângulo retângulo, sendo θ diferente de 90º, definiremos:

Senθ = Cateto oposto a θ
          hipotenusa

cosθ = Cateto adjacente a θ
         hipotenusa

tgθ = Cateto oposto a θ
         Cateto ajacente a θ

Essas razões funcionam em qualquer triângulo retângulo que possua um ângulo igual a θ, independentemente do comprimento dos lados desses triângulos, em virtude da semelhança de triângulos pelo caso ângulo – ângulo.

A primeira tabela trigonométrica envolve apenas ângulos notáveis, isto é, os ângulos de 30º, 45º e 60º.

Na figura a seguir onde está assinalado a medida de cada ângulo do polígono determine o valor de x

Tabela dos valores numéricos de seno, cosseno e tangente dos ângulos notáveis

Geralmente os professores usam uma música para que os alunos jamais se esqueçam dessa tabela. A canção é a seguinte:

“um, dois, três.

Três, dois, um.

Tudo sobre dois,

só não tem raiz o um!”

Repare que cada verso é um passo para a construção dessa tabela. Escreve-se 1, 2, 3 na primeira linha; 3, 2, 1 na segunda; divide-se tudo por 2, e o único numerador que não possui raiz é o 1. A linha referente à tangente é obtida pela divisão dos valores de seno por cosseno.

Caso os ângulos sejam diferentes de 30º, 45º ou 60º, pode-se utilizar a tabela seguinte, que aproxima os valores de seno, cosseno e tangente de cada ângulo agudo.

Na figura a seguir onde está assinalado a medida de cada ângulo do polígono determine o valor de x

Tabela trigonométrica com todos os ângulos agudos

Exemplo: Calcule o valor de x no triângulo abaixo.

Na figura a seguir onde está assinalado a medida de cada ângulo do polígono determine o valor de x

Triângulo retângulo com um ângulo agudo de 35°

Para calcular o valor de x na figura acima, basta utilizar a noção de cosseno, já que as medidas que dispomos são de um ângulo agudo de um triângulo retângulo, do cateto adjacente a esse ângulo e da hipotenusa (é a medida que queremos descobrir).

Cosθ = Cateto adjacente
           hipotenusa

Cos35° = 4
              x

Observe na tabela que Cos35° = 0,819. Substitua esse valor na expressão acima e utilize regra de três para calcular o valor de x.

Cos35° = 4
              x

0,819 = 4
            x

0,819x = 4

x =     4   
      0,819

x = 4,88

Logo, a medida de x é 4,88.

Entre os elementos de um polígono, estão os lados, vértices, ângulos internos e ângulos externos. Quando o polígono é convexo, também podemos pensar nas suas diagonais e criar propriedades como a soma de seus ângulos internos e a soma de seus ângulos externos. Essa última propriedade deve sempre ser igual a 360°, em todo polígono convexo. Isso é resultado da definição dos ângulos externos, aliada a algumas propriedades envolvendo ângulos que serão discutidas mais adiante.

A soma dos ângulos internos varia de polígono a polígono, dependendo de seu número de lados. Assim, desde que convexos, os polígonos:

a) Que possuem três lados têm soma dos ângulos internos igual a 180°;

b) Que possuem quatro lados têm a soma dos ângulos internos igual a 360°;

c) Que possuem n lados têm a soma dos ângulos internos igual a (n – 2)180.

Definição de ângulo externo

Um ângulo externo é a abertura entre o prolongamento de um lado de um polígono e o lado adjacente a ele. Observe, por exemplo, os ângulos externos da figura a seguir:

Os ângulos assinalados com as letras gregas α, β, γ, δ e ε são externos, pois representam justamente a abertura entre um lado do polígono e o prolongamento do lado adjacente a ele.

Propriedades relacionando ângulos externos e ângulos internos

Perceba que sempre existe um ângulo interno que compartilha um lado de um polígono com um ângulo externo. Observe também que esses dois ângulos estão sempre sobre a mesma reta, já que o ângulo externo depende do prolongamento do lado do polígono. Dessa forma, garantimos que a soma de um ângulo interno com o ângulo externo adjacente a ele é igual a 180°. Em outras palavras:

Um ângulo interno e o ângulo externo adjacente a ele sempre são suplementares.

No pentágono regular acima, temos um ângulo interno e um externo. Como o pentágono é regular, cada um de seus ângulos internos mede 108°. Assim sendo, cada um de seus ângulos externos medirá 72°.

Observe que existem exatos cinco ângulos externos nesse polígono, e que todos medem 72° porque o polígono é regular.

5·72 = 360°

Demonstração

Independentemente de qual seja o polígono convexo e sua quantidade de lados, ou do fato de todos os lados possuírem medidas diferentes, cada ângulo interno (Si), somado ao seu ângulo externo adjacente (Ai), deve ter como resultado 180°:

Si + Ai = 180°

Seja S a soma de todos os ângulos internos e A a soma de todos os ângulos externos, em um polígono de n lados, temos também n ângulos internos e n ângulos externos. Assim:

S + A = 180·n

A soma dos ângulos internos nós já conhecemos, pois ela é obtida pela expressão: S = (n – 2)180. Substituindo S por essa expressão na equação anterior, temos:

S + A = 180n

(n – 2)180 + A = 180n

180n – 360 + A = 180n

Como queremos descobrir a soma dos ângulos externos de um polígono, isolaremos a incógnita A no primeiro membro:

180n – 360 + A = 180n

A = 180n + 360 – 180n

A = 360°

Portanto, fica demonstrado que a soma dos ângulos externos de um polígono convexo é sempre igual a 360°.

Teste seus conhecimentos sobre soma dos ângulos internos de um polígono regular resolvendo estes exercícios!

Questão 1

Calcule a soma dos ângulos internos de um triângulo qualquer e de um retângulo qualquer.

Questão 2

Calcule o valor de cada ângulo do quadrilátero seguinte:

Questão 3

(UNIFESP - 2003) Pentágonos regulares congruentes podem ser conectados lado a lado, formando uma estrela de cinco pontas, conforme destacado na figura a seguir

Nessas condições, o ângulo θ mede:

a) 108°.

b) 72°.

c) 54°.

d) 36°.

e) 18°.

Questão 4

(FAAP-97) A medida mais próxima de cada ângulo externo do heptágono regular da moeda de R$ 0,25 é:

a) 60°

b) 45°

c) 36°

d) 83°

e) 51°

Resposta - Questão 1

Independentemente do polígono a que o exercício ou situação se refira, a soma dos seus ângulos internos tem valor fixo e é dada pela fórmula S = (n – 2)·180, em que n é o número de lados do polígono. Logo,

Soma dos ângulos internos do triângulo:

S = (3 – 2)·180

S = 1·180

S = 180°

Qualquer que seja o triângulo, a soma de seus ângulos internos sempre será igual a 180°. Isso pode ser usado quando conhecemos as medidas de dois dos ângulos internos de um triângulo e é necessário calcular o valor da última.

Soma dos ângulos internos de um retângulo:

S = (4 – 2)·180

S = 2·180

S = 360°

Não só retângulos, mas qualquer que seja o quadrilátero, a soma de seus ângulos internos será 360°.

Resposta - Questão 2

A soma dos ângulos internos de um quadrilátero é dada por:

S = (n – 2)·180

Sabendo que o número de lados da figura é 4, basta substituir n por 4:

S = (4 – 2)·180

S = 2·180

S = 360°

Agora some os ângulos internos dessa figura e iguale o resultado a 360°:

2x + 4x + 2x + 4x = 360

12x = 360

x = 360
     12

x = 30

Agora basta substituir x em cada ângulo para descobrir os seus valores.

4x = 4·30 = 120° e

2x = 2·30 = 60°

Os ângulos são 120° e 60°.

Resposta - Questão 3

Na ponta da estrela onde está destacado o ângulo θ, temos o encontro de três ângulos internos de pentágonos regulares. Para descobrir a medida de cada um desses ângulos, basta calcular a soma dos ângulos internos do pentágono e dividir por 5.

A fórmula para calcular a soma dos ângulos internos de um polígono é:

S = (n – 2)·180

*n é o número de lados do polígono. No caso desse exercício:

S = (5 – 2)·180

S = 3·180

S = 540

Dividindo a soma dos ângulos internos por 5, pois um pentágono possui cinco ângulos internos, encontraremos 108° como medida de cada ângulo interno.

Observe na imagem anterior que a soma de três ângulos internos do pentágono com o ângulo θ tem como resultado 360°.

108 + 108 + 108 + θ = 360

324 + θ = 360

θ = 360 – 324

θ = 36°

Letra D.

Resposta - Questão 4

Heptágonos são figuras geométricas que possuem sete lados, sete vértices e sete ângulos. Como esse heptágono é regular, então todos os seus ângulos e lados possuem a mesma medida.

A soma dos ângulos internos do heptágono é:

S = (n – 2)·180

S = (7 – 2)·180

S = 5·180

S = 900°

Cada ângulo interno do heptágono regular mede a soma dos ângulos internos dividida por 7.

900 = 128,57
7             

Agora, resta apenas descobrir o valor de um ângulo externo. Os ângulos externos de um polígono são suplementares aos ângulos internos respectivos. Portanto, a soma entre um ângulo interno e seu ângulo externo tem como resultado 180°. Dessa forma, os ângulos externos da moeda de 25 centavos medem:

128,57 + x = 180

x = 180 – 128,57

x = 51,43°

Letra E.

Soma dos Ângulos Internos de um Polígono Regular

Versão desktop

Copyright © 2022 Rede Omnia - Todos os direitos reservados Proibida a reprodução total ou parcial sem prévia autorização (Inciso I do Artigo 29 Lei 9.610/98)