How many words can be formed from the letters of the word combination so that vowels always come together?

This section covers permutations and combinations.

Arranging Objects

The number of ways of arranging n unlike objects in a line is n! (pronounced ‘n factorial’). n! = n × (n – 1) × (n – 2) ×…× 3 × 2 × 1

Example

How many different ways can the letters P, Q, R, S be arranged?

The answer is 4! = 24.

This is because there are four spaces to be filled: _, _, _, _

The first space can be filled by any one of the four letters. The second space can be filled by any of the remaining 3 letters. The third space can be filled by any of the 2 remaining letters and the final space must be filled by the one remaining letter. The total number of possible arrangements is therefore 4 × 3 × 2 × 1 = 4!

  • The number of ways of arranging n objects, of which p of one type are alike, q of a second type are alike, r of a third type are alike, etc is:

n!        .
p! q! r! …

Example

In how many ways can the letters in the word: STATISTICS be arranged?

There are 3 S’s, 2 I’s and 3 T’s in this word, therefore, the number of ways of arranging the letters are:

10!=50 400
3! 2! 3!

Rings and Roundabouts

  • The number of ways of arranging n unlike objects in a ring when clockwise and anticlockwise arrangements are different is (n – 1)!

When clockwise and anti-clockwise arrangements are the same, the number of ways is ½ (n – 1)!

Example

Ten people go to a party. How many different ways can they be seated?

Anti-clockwise and clockwise arrangements are the same. Therefore, the total number of ways is ½ (10-1)! = 181 440

Combinations

The number of ways of selecting r objects from n unlike objects is:

How many words can be formed from the letters of the word combination so that vowels always come together?

Example

There are 10 balls in a bag numbered from 1 to 10. Three balls are selected at random. How many different ways are there of selecting the three balls?

10C3 =10!=10 × 9 × 8= 120
             3! (10 – 3)!3 × 2 × 1

Permutations

A permutation is an ordered arrangement.

  • The number of ordered arrangements of r objects taken from n unlike objects is:

nPr =       n!       .
          (n – r)!

Example

In the Match of the Day’s goal of the month competition, you had to pick the top 3 goals out of 10. Since the order is important, it is the permutation formula which we use.

10P3 =10!
            7!

= 720

There are therefore 720 different ways of picking the top three goals.

Probability

The above facts can be used to help solve problems in probability.

Example

In the National Lottery, 6 numbers are chosen from 49. You win if the 6 balls you pick match the six balls selected by the machine. What is the probability of winning the National Lottery?

The number of ways of choosing 6 numbers from 49 is 49C6 = 13 983 816 .

Therefore the probability of winning the lottery is 1/13983816 = 0.000 000 071 5 (3sf), which is about a 1 in 14 million chance.

Permutation is known as the process of organizing the group, body, or numbers in order, selecting the body or numbers from the set, is known as combinations in such a way that the order of the number does not matter.

In mathematics, permutation is also known as the process of organizing a group in which all the members of a group are arranged into some sequence or order. The process of permuting is known as the repositioning of its components if the group is already arranged. Permutations take place, in almost every area of mathematics. They mostly appear when different commands on certain limited sets are considered.



Permutation Formula

In permutation r things are picked from a group of n things without any replacement. In this order of picking matter.

nPr = (n!)/(n – r)!

Here,

n = group size, the total number of things in the group

r = subset size, the number of things to be selected from the group

Combination

A combination is a function of selecting the number from a set, such that (not like permutation) the order of choice doesn’t matter. In smaller cases, it is conceivable to count the number of combinations. The combination is known as the merging of n things taken k at a time without repetition. In combination, the order doesn’t matter you can select the items in any order. To those combinations in which re-occurrence is allowed, the terms k-selection or k-combination with replication are frequently used.

Combination Formula

In combination r things are picked from a set of n things and where the order of picking does not matter.

nCr = n!⁄((n-r)! r!)

Here,

n = Number of items in set

r = Number of things picked from the group

Solution:

Vowels are: I,I,O,E

If all the vowels must come together then treat all the vowels as one super letter, next note the letter ‘S’ repeats so we’d use

7!/2! = 2520 

Now count the ways the vowels in the super letter can be arranged, since there are 4 and 1 2-letter(I’i) repeat the super letter of vowels would be arranged in 12 ways i.e., (4!/2!)

= (7!/2! × 4!/2!) 

= 2520(12)

= 30240 ways

Similar Questions

Question 1: In how many ways can the letters be arranged so that all the vowels came together word is CORPORATION?

Solution:

Vowels are :- O,O,A,I,O

If all the vowels must come together then treat all the vowels as one super letter, next note the R’r letter repeat so we’d use

7!/2! = 2520

Now count the ways the vowels in the super letter can be arranged, since there are 5 and 1 3-letter repeat the super letter of vowels would be arranged in 20 ways i.e., (5!/3!)

= (7!/2! × 5!/3!)

= 2520(20)

= 50400 ways

Question 2: In how many different ways can the letters of the word ‘MATHEMATICS’ be arranged such that the vowels must always come together?

Solution:

Vowels are :- A,A,E,I

Next, treat the block of vowels like a single letter, let’s just say V for vowel. So then we have MTHMTCSV – 8 letters, but 2 M’s and 2 T’s. So there are

8!/2!2! = 10,080

Now count the ways the vowels letter can be arranged, since there are 4 and 1 2-letter repeat the super letter of vowels would be arranged in 12 ways i.e., (4!/2!)

= (8!/2!2! × 4!/2!)

= 10,080(12)

= 120,960 ways

Question 3: In How many ways the letters of the word RAINBOW be arranged in which vowels are never together?

Solution:

Vowels are :- A, I, O  

Consonants are:- R, N, B, W.

Arrange all the vowels in between the consonants so that they can not be together. There are 5 total places between the consonants. So, vowels can be organize in 5P3 ways and the four consonants can be organize in 4! ways.

Therefore, the total arrangements are 5P3 * 4! = 60 * 24 = 1440

Article Tags :

Answer

How many words can be formed from the letters of the word combination so that vowels always come together?
Verified

Hint: The word daughter has $8$ letters in which $3$ are vowels. For the vowels to always come together consider all the $3$ vowels to be one letter (suppose V) then total letters become $6$ which can be arranged in $6!$ ways and the vowels themselves in $3!$ ways.

Complete step-by-step answer:

Given word ‘DAUGHTER’ has $8$ letters in which $3$ are vowels and 5 are consonants. A, U, E are vowels and D, G, H, T, R are consonants.(i)We have to find the total number of words formed when the vowels always come together.Consider the three vowels A, U, E to be one letter V then total letters are D, G, H, T, R and V. So the number of letters becomes $6$So we can arrange these $6$ letters in $6!$ ways. Since the letter V consists of three vowels, the vowels themselves can interchange with themselves. So the number of ways the $3$vowels can be arranged is $3!$ Then,$ \Rightarrow $ The total number of words formed will be=number of ways the $6$ letters can be arranged ×number of ways the $3$ vowels can be arrangedOn putting the given values we get,$ \Rightarrow $ The total number of words formed=$6! \times 3!$ We know $n! = n \times \left( {n - 1} \right)! \times ...3,2,1$ $ \Rightarrow $ The total number of words formed=$6 \times 4 \times 5 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1$ On multiplying all the numbers we get, $ \Rightarrow $ The total number of words formed=$24 \times 5 \times 6 \times 6$ $ \Rightarrow $ The total number of words formed=$120 \times 36$ $ \Rightarrow $ The total number of words formed=$4320$

The number of words formed from ‘DAUGHTER’ such that all vowels are together is $4320$.

(ii)We have to find the number of words formed when no vowels are together.Consider the following arrangement- _D_H_G_T_RThe spaces before the consonants are for the vowels so that no vowels come together. Since there are $5$ consonants so they can be arranged in $5!$ ways.There are $6$ spaces given for $3$ vowels. We know to select r things out of n things we write use the following formula-${}^{\text{n}}{{\text{C}}_{\text{r}}}$=$\dfrac{{n!}}{{r!n - r!}}$ So to select $3$ spaces of out $6$ spaces =${}^6{{\text{C}}_3}$ And the three vowels can be arranged in these three spaces in $3!$ ways.$ \Rightarrow $ The total number of words formed=${}^6{{\text{C}}_3} \times 3! \times 5!$$ \Rightarrow $ The total number of words formed=$\dfrac{{6!}}{{3!6 - 3!}} \times 5! \times 3!$ $ \Rightarrow $ The total number of words formed=$\dfrac{{6!}}{{3!}} \times 5!$ On simplifying we get-$ \Rightarrow $ The total number of words formed=$\dfrac{{6 \times 5 \times 4 \times 3!}}{{3!}} \times 5!$ $ \Rightarrow $ The total number of words formed=$120 \times 5 \times 4 \times 3 \times 2 \times 1$ On multiplying we get,$ \Rightarrow $ The total number of words formed=$14400$

The total number of words formed from ‘DAUGHTER’ such that no vowels are together is $14400$.

Note: Combination is used when things are to be arranged but not necessarily in order. Permutation is a little different. In permutation, order is important. Permutation is given by-

$ \Rightarrow {}^n{P_r} = \dfrac{{n!}}{{n - r!}}$ Where n=total number of things and r=no. of things to be selected.