Exercícios de lei de senos com raiz quadrada e alfa

As transformações trigonométricas são fórmulas usadas para encontrar sen2a, cos2a e tg2a

Para iniciar a discussão sobre as fórmulas de multiplicação das transformações trigonométricas, é bom pensarmos em uma breve comparação: suponha que seja necessário encontrar o produto entre o ângulo de 30° e o número 2. O resultado desse produto será: 2·30° = 60°. Agora, façamos os cálculos para o seno de 30°:

Sen30° = 1/2

sen60° = sen2·30° = 1/2·1/2 = 1/4.

Entretanto, observe que o seno de 60° não é igual a 1/4. Isso acontece porque o método usado na multiplicação está incorreto, uma vez que o produto envolve os senos dos ângulos de 30° e não o ângulo em si.

As técnicas corretas para realizar essa multiplicação são parte do que conhecemos como transformações trigonométricas.

Seno

Sejam a e b considerados ângulos quaisquer, a fórmula usada para encontrar sen2a é:

sen(a + b) = sena·cosb + senb·cosa

Observe que, se b = a, então a + b = 2a, portanto:

sen2a = sena·cosa + sena·cosa

sen2a = 2sena·cosa

Note que podemos usar a fórmula relativa à adição do seno de dois arcos, substituindo a e b pelo mesmo ângulo, ou podemos usar esse último resultado para encontrar essa soma.

Cosseno

Considerando a e b como ângulos quaisquer, existem três fórmulas que podem ser usadas para determinar o cos2a. Todas elas têm como base os seguintes resultados:

Não pare agora... Tem mais depois da publicidade ;)

cos(a + b) = cosa·cosb – sena·senb

e

sen2a + cos2a = 1

Observe que, se a = b, teremos cos2a, portanto:

cos(a + b) = cosa·cosb – sena·senb

cos2a = cosa·cosa – sena·sena

cos2a = cos2a – sen2a

Essa é uma das fórmulas que podem ser usadas para determinar cos2a. As outras são obtidas a partir do seguinte fato:

sen2a + cos2a = 1

sen2a = 1 – cos2a

Substituindo o valor do sen2a na fórmula do cos2a, teremos:

cos2a = cos2a – sen2a

cos2a = cos2a – (1 – cos2a)

cos2a = cos2a – 1 + cos2a

cos2a = 2cos2a – 1

Caso façamos uma substituição análoga, para cos2a = 1 – sen2a, teremos:

cos2a = cos2a – sen2a

cos2a = 1 – sen2a – sen2a

cos2a = 1 – 2sen2a

Tangente

Se a e b são ângulos quaisquer diferentes de 90°, a fórmula usada para encontrar tg2a é:

tg(a + b) =    tga + tgb  
                  1 – tga·tgb

Fazendo a = b, teremos:

tg(a + a) =    tga + tga   
               1 – tga·tga

tg2a =       2tga     
         1 – tg2a

Bem-vindo(a) à versão beta dos Flashcards Brasil Escola! Essa é uma nova funcionalidade, criada para ajudar nossos usuários a terem uma nova experiência nos estudos com nossos conteúdos.

Este guia dará uma visão inicial de como você pode usar os flashcards. Aproveite para usufruir bastante dessa nova interação!

Visão Geral

Flashcard é uma técnica de estudos usada por muitos alunos para testar os próprios conhecimentos. Funciona como um jogo da memória. Na prática normal dessa técnica, durante os estudos de alguma matéria, o estudante faz anotações em pequenos pedaços de papel, os quais contêm uma pergunta na frente e uma resposta rápida no verso. Depois de finalizados os estudos, o aluno inicia os testes de conhecimento utilizando os flashcards acumulados um a um. Basta ler a pergunta e tentar acertar mentalmente a resposta anotada no verso do card.

Passo a passo

1.

Abra o menu dos flashcards clicando no pop-up no canto direito da tela, em qualquer dispositivo.

2.

Quando se deparar com uma informação que merece um destaque em forma de revisão ou teste de conhecimento, clique em Novo Flashcard.

3.

Digite uma pergunta e a resposta de acordo com o que deseja revisar ao final e clique em Salvar. Essa informação poderá ser editada mais tarde.

Crie quantos flashcards quiser, mas lembre-se de que esses flashcards não são salvos na sessão, então, caso atualize ou feche a página, você irá perder todos os registros. O Brasil Escola irá trabalhar para que, futuramente, seus flashcards fiquem salvos em seu perfil.

4.

Você pode visualizar todos os flashcards criados, editar ou excluir caso deseje. Basta acessar a opção Visão Geral no menu e clicar no item que queira. Os itens aparecerão com a pergunta que você cadastrou. Ao acessar o item, você poderá ver também a resposta e manipular como quiser.

(Listagem dos Flashcards)

(Edição do Flashcard)

5.

Ao final de seus estudos, é hora de testar seus conhecimentos ou revisar suas anotações. Clique no Play em Testar Conhecimentos e comece!

Um a um, os flashcards começarão a aparecer. Quando aparecer a pergunta, responda mentalmente o que você anotou e clique em "Ver resposta" para conferir.

Obviamente, em certos casos, não é necessário que sua resposta mental seja idêntica à que você anotou. O importante é que você tenha entendido o conteúdo e não decorado a resposta! :D

Bons estudos!

Equipe Brasil Escola.

A lei dos cossenos é utilizada em problemas que envolvem triângulos não retângulos, ou seja, os triângulos que não possuem um ângulo de 90°. Uma vez que não possuem ângulo reto, as relações trigonométricas (seno, cosseno e tangente) não podem ser aplicadas, o que culmina na utilidade da lei dos cossenos.

Veja, abaixo, a lei dos cossenos utilizada para descobrir lados e ângulos:

a2 = b2 + c2 – 2·b·c·cos a
b2 = a2 + c2 – 2·a·c·cos b
c2 = a2 + b2 – 2·a·b·cos c

Nas fórmulas acima temos os lados a, b e c, na qual o lado que desejamos descobrir ou seu valor ou seu ângulo deve vir do lado esquerdo da igualdade, logo antes do sinal de igual.

Perceba, nos exemplos abaixo, como resolver problemas utilizando a lei dos cossenos.

1) Descubra o valor do lado X do no triângulo abaixo.

x2 = b2 + c2 – 2·b·c·cos x
x2 = 32 + 42 – 2 * 3 * 4 * cos60°                                     

Nesse momento, precisamos aplicar conhecimentos de trigonometria e saber que o cosseno de 60° vale ½.

x2 = 9 + 16 – 24 * ½
x2 = 25 - 12
x2 = 13
x = 13

2) Calcule o valor do cosseno do ângulo x.

a2 = b2 + c2 – 2·b·c·cos x
72 = 52 + 62 – 2 * 5 * 6 * cos x 49 = 25 + 36 – 60cos x

49 = 61 – 60cos x

-12 = -60cos x

 = cos x

cos x = 1/5

Lei dos Senos

O fundamento matemático é denominado lei dos senos porque determina que a relação do seno de um determinado ângulo é sempre proporcional à medida do lado oposto a esse ângulo.

Esse teorema define que sempre será constante a relação entre o seno e a medida do seu lado dentro de um triângulo.

Para o mesmo triângulo ABC acima temos que:

Para compreender melhor, digamos que o ângulo a vale 60° e o ângulo b 45°. Desse modo, o ângulo c valerá 75°. A partir disso podemos realizar as seguintes relações:

Perceba, no exemplo abaixo, como resolver problemas utilizando a lei dos senos.

1) No triângulo a seguir, determine a medida do lado AC, tendo em vista as medidas presentes nele. (Use √2 = 1,4 e √3 = 1,7).

Sendo B = 45°, A = 60° e BC = 10:

X = 8,2

Exercícios resolvidos Lei dos Cossenos

A relação entre os três lados de um triângulo e o cosseno de um dos três ângulos determina o que chamamos de lei dos cossenos.

a2 = b2 + c2 – 2·b·c·cos a

Essa lei de fácil aplicação demanda conhecimentos básicos de trigonometria e o entendimento que o lado do triângulo antes do sinal da igualdade deve ser aquele que está do lado oposto ao ângulo abordado na equação.

Veja, abaixo, alguns exercícios que demandam a aplicação da lei dos cossenos:

1) (UF- Viçosa) Dois lados de um terreno de forma triangular medem 15 m e 10 m, formando um ângulo de 60°, conforme a figura abaixo:

O comprimento do muro necessário para cercar o terreno, em metros, é:

a) 5(5 + √15) b) 5(5 + √5) c) 5(5 + √13) d) 5(5 + √11)

e) 5(5 + √7)

A questão pede para calcularmos o perímetro do triângulo acima, mas antes precisamos descobrir o valor do lado oposto ao ângulo de 60°, assim temos:

a2 = b2 + c2 – 2·b·c·cos a
a2 = 152 + 102 – 2 * 15 * 10 * cos 60°
a2 = 225 + 100 – 300 * ½
a2 = 325 – 150
a2 = 175

a = √175

Fatorando temos que:

a = √5*5*7
a = 5√7

Como a questão pede o valor do perímetro desse triângulo, devemos somar os valores dos lados.

5√7 + 10 + 15 25 + 5√7 5*5 + 5√7

5(5+√7), letra e

2) (UF- Juiz de Fora) Dois lados de um triângulo medem 8 m e 10 m e formam um ângulo de 60°. O terceiro lado desse triângulo mede:

a) 2√21 m b) 2√31 m c) 2√41 m d) 2√51 m

e) 2√61 m

Sabemos que entre os lados que medem 8 m e 10 m, existe um ângulo de 60°. Desse modo, esse ângulo é oposto ao terceiro lado que devemos descobrir.

a2 = b2 + c2 – 2·b·c·cos a
a2 = 82 + 102 – 2 * 8 * 10 *cos 60°
a2 = 64 + 100 – 160 * ½
a2 = 164 – 80
a2 = 84

a = √84 a = √2*2*21

a = 2√21, gabarito letra a.

3) (UNESP-SP-2009) Paulo e Marta estão brincando de jogar dardos. O alvo é um disco circular de centro O. Paulo joga um dardo, que atinge o alvo num ponto, que vamos denotar por P; em seguida, Marta joga outro dardo, que atinge um ponto denotado por M, conforme figura.

Sabendo-se que a distância do ponto P ao centro O do alvo é PO = 10 cm, que a distância de P a M é = 14 cm e que o ângulo PÔM mede 120°, a distância, em centímetros, do ponto M ao centro O é 

Chamando a de 14 cm, c de 10 cm, e a distância MO a ser descoberta de b, temos que:

a2 = b2 + c2 – 2·b·c·cos a
142= x2 + 102 – 2 * x * 10 * cos 120°
196 = x2 + 100 + 20x * (-1/2)
96 = x2 + 10x
x2 + 10x – 96 = 0

a = 1 b = 10

c = -96

Como um número negativo não serve, a distância MO é de 6 cm.

Exercícios Resolvidos Lei dos Senos

A equação que envolve a razão da medida de um lado pelo seno do seu ângulo oposto é chamada de lei dos senos. Demandando noções básicas de trigonometria, a lei dos senos nada mais é do que uma proporção entre os lados e senos dos ângulos opostos dentro de um triângulo.

Veja, abaixo, como aplicar o conceito de lei dos senos nos mais diversos concursos públicos do país.

1) (UFU-MG) Considere o triângulo retângulo a seguir.

Sabendo-se que α = 120°, AB = AC = 1 cm, então AD é igual a:

Observe que o enunciado informa que AB e AC são iguais, logo nesse triângulo isósceles os ângulos B e C valem 45°.

Focando no triângulo ADB, sabemos que o ângulo alfa vale 120° e é oposto ao lado AB e que o ângulo B é igual a 45° e oposto ao lado AD. Desse modo:

2) (Mackenzie – SP) Três ilhas A, B e C aparecem num mapa em escala 1:10000, como na figura. Das alternativas, a que melhor se aproxima de distância entre as ilhas A e B é:

a) 2,3 km b) 2,1 km c) 1,9 km d) 1,4 km

e) 1,7 km

Primeiramente, se temos um triângulo cujos dois ângulos medem 105° e 30°, o terceiro medirá 45°.

Como a questão pede a medida do lado AB, deveremos relacioná-lo ao seu ângulo oposto, o ângulo de 45°. Veja:

Agora, convertendo o valor no desenho para o valor real temos: 16,97 * 10000 = 169700 cm.

Sendo assim, convertendo de centímetros para quilômetros teremos aproximadamente 1,7km.

3) (UFSM) Na instalação das lâmpadas da praça de alimentação, a equipe necessitou calcular corretamente a distância entre duas delas, colocadas nos vértices B e C do triângulo, segundo a figura. Assim, a distância “d” é?  

Para aplicar a lei dos senos no triângulo acima precisamos apenas identificar qual ângulo é oposto a qual lado. O ângulo de 30° é oposto ao lado AC que mede 50 metros, enquanto o lado BC, que é a medida d que o enunciado nos pede para encontrarmos, é oposto ao ângulo de 135°. Sendo assim, temos:

Última postagem

Tag