Como resolver sistemas com raiz quadrada

Equação irracional é a que possui incógnita dentro de um radical, ou seja, a incógnita é o radicando. A equação irracional pode ter qualquer índice na raiz, como a raiz cúbica, raiz quarta e assim sucessivamente, mas a mais comum é a raiz quadrada. Resolver uma equação irracional é encontrar o valor que a incógnita deve assumir para que a equação seja verdadeira.

Para encontrar as soluções de uma equação irracional, isolamos o radical e utilizamos potenciação para que seja possível eliminar a raiz e, assim, transformar a inequação que era irracional em racional, já que conhecemos as técnicas para resolução. Por exemplo, quando ela se torna uma equação do 1º grau, é possível isolar o x e encontrar a solução, e, em outros casos de equações racionais, utilizamos o método conveniente para resolver a equação que aparece após eliminarmos a radiciação.

Leia também: O que é equação exponencial?

Resumo sobre equação irracional

  • É a que possui uma incógnita dentro da raiz.

  • Pode ter qualquer índice, ser uma raiz quadrada, uma raiz cúbica, enfim, uma raiz com qualquer índice possível.

  • Para resolvê-la, isolamos a raiz e calculamos a sua potência, de modo que ela se torne uma equação sem radical.

Videoaula sobre equações irracionais

É conhecida como irracional a equação que possui incógnitas dentro de um radical. Essa raiz pode ser de qualquer índice, como uma raiz quadrada, uma raiz cúbica, uma raiz quarta, entre outras. A equação irracional mais comum é a que possui índice dois, ou seja, a raiz quadrada.

→ Exemplos de equação irracional

  • \( \sqrt{x^2+2x}=35\)

  • \( \sqrt[3]{2x-8}=125\)

  • \( 9x-4=\sqrt{3x}+2\)

  • 3 = \(\sqrt[4]{2x-3}\)

Como resolver as equações irracionais?

Para encontrar as soluções de uma equação irracional, é necessário isolar a radiciação e elevar a potência que seja igual ao índice que está no radicando, eliminando a raiz e tornando a equação racional, posteriormente, esta será resolvida.

Exemplo 1:

\(\sqrt{2x-3}+1=6\)

Resolução:

Primeiro isolaremos a raiz quadrada:

\(\sqrt{2x-3}=6-1\)

\(\sqrt{2x-3}=5\)

Agora elevaremos ao quadrado dos dois lados, para eliminar a raiz quadrada:

\(\left(\sqrt{2x-3}\right)^2=5^2\)

\(2x-3=25\ \)

Note que agora temos uma equação racional que é uma equação do 1º grau, utilizando as técnicas de resolução de equações desse tipo, isolaremos a incógnita:

\(2x=25+3\)

\(2x=28\)

\(x=\frac{28}{2}\)

\(x=14\ \)

Como existe restrição para os valores que estão dentro de uma raiz quadrada, é importante, ao final, verificar se o valor encontrado é de fato solução da equação irracional:

\(\sqrt{2x-3}+1=6\)

\(\sqrt{2\bullet14-3}+1=6\)

\(\sqrt{28-3}+1=6\)

\(\sqrt{25}+1=6\)

\(5+1=6\)

\(6=6\)

Então x = 14 é a solução da equação.

Exemplo 2:

Encontre as soluções da equação irracional:

\(\sqrt{x^2+24}=x-4\)

Resolução:

Elevando ao quadrado dos dois lados:

\(\left(\sqrt{x^2+24}\right)^2=\left(x+4\right)^2\)

\(x^2+24=x^2+8x+16\)

\(x^2-x^2-\ 8x=16-24\ \)

\(-8x=-8\)

\(x=\frac{-8}{-8}\)

\(x=1\ \)

Agora verificando se x = 1 é solução:

\(\sqrt{x^2+24}=x-4\)

\(\sqrt{1^2+24}=1-4\)

\(\sqrt{1+24}=-3\)

\(\sqrt{25}=-3\)

\(5=-3\ \)

Note que nós encontramos uma inverdade, então x = 1 não é solução dessa equação. Nesse caso, temos uma equação irracional que não possui tem real.

Exemplo 3:

Encontre as possíveis soluções da equação:

\(\sqrt[3]{x^2+3x-1}+5=8\)

Resolução:

Primeiro isolaremos a raiz cúbica no primeiro membro da equação:

\(\sqrt[3]{x^2+3x-1}=8-5\)

\(\sqrt[3]{x^2+3x-1}=3\)

Agora elevando ao cubo dos dois lados:

\(\left(\sqrt[3]{x^2+3x-1}\right)^3=3^3\)

\(x^2+3x-1=27\)

Agora encontramos uma equação racional. Note que essa é uma equação do 2º grau, então utilizaremos técnicas de resolução para encontrar o conjunto de soluções desse tipo de equação, como a fórmula de Bháskara:

\(x^2+3x-1-27=0\)

\(x^2+3x-28=0\)

Logo:

\(\Delta=b^2-4ac\)

\(\Delta=3^2-4\cdot1\cdot\left(-28\right)\)

\(\Delta=9+112\)

\(\Delta=121\)

\(x=\frac{-b\pm\sqrt\Delta}{2a}\)

\(x=\frac{-3\pm\sqrt{121}}{2\cdot1}\)

\(x=\frac{-3\pm11}{2}\)

\(x_1=\frac{-3+11}{2}=\frac{8}{2}=4\)

\(x_2=\frac{-3-11}{2}=-\ \frac{14}{2}=-7\)

Verificando as soluções:

\(\sqrt[3]{x^2+3x-1}+\ 5=7\)

Verificando se x = 4:

\(\sqrt[3]{4^2+3\bullet4-1}+5=8\)

\(\sqrt[3]{16+12-1}+5=8\)

\(\sqrt[3]{27}+5=8\)

\(3+5=8\)

\(8=8\)

Logo:

x = 4 é solução

Agora verificando se x = \(-7\) é solução:

\(\sqrt[3]{{(-7)}^2+3\bullet(-7)-1}+5=8\)

\(\sqrt[3]{49-21-1}+5=8\)

\(\sqrt[3]{27}+5=8\)

\(3+5=8\ \)

\(8=8\ \)

Então as soluções dessa equação irracional são

\(x=4\ ou\ x=-7\)

Veja também: Quais são as equações incompletas do segundo grau?

Exercícios resolvidos sobre equação irracional

Questão 1

Analise as equações a seguir:

I.  \(\sqrt3+x=2\)

II. \(\sqrt{3-2}=x^2+1\)

III. \(6–x=x+4\)

A equação que pode ser classificada como irracional é:

A) somente a equação I

B) somente a equação II

C) somente a equação III

D) nenhuma das equações

Resolução:

Alternativa C

Para que uma equação seja irracional, é necessário que ela tenha uma incógnita dentro do radical, fato esse que acontece somente na equação III.

Questão 2

(Consesp) Resolva a equação irracional no conjunto dos números reais.

\(\sqrt{2x-3}-\sqrt{x+11}=0\)

A) V = {12}

B) V = {14}

C) V = {11}

D) V = {9}

E) V = {16}

Resolução:

Alternativa B

Primeiro vamos passar o segundo radical para o segundo membro:

\(\sqrt{2x-3}-\sqrt{x+11}=0\)

\(\sqrt{2x-3}=\sqrt{x+11}\)

Elevando ao quadrado dos dois lados:

\(\left(\sqrt{2x-3}\right)^2=\left(\sqrt{x+11}\right)^2\)

\(2x-3=x+11\)

\(2x-x=11+3\)

\(x=14\ \)

Então como solução temos que V = {14}.

Equações irracionais apresentam uma incógnita dentro de um radical, ou seja, há uma expressão algébrica no radicando.

Como resolver sistemas com raiz quadrada

Confira alguns exemplos de equações irracionais.

Como resolver uma equação irracional?

Para resolver uma equação irracional a radiciação deve ser eliminada, transformando-a em uma equação racional mais simples para encontrar o valor da variável.

1º passo: isole o radical no primeiro membro da equação.

2º passo: eleve ambos os membros da equação ao número que corresponde ao índice do radical.

Por se tratar de uma raiz quadrada, deve-se elevar os dois membros ao quadrado e, com isso, elimina-se a raiz.

3º passo: encontre o valor de x resolvendo a equação.

4º passo: verifique se a solução é verdadeira.

Para a equação irracional, o valor de x é – 2.

Exemplo 2

1º passo: elevar ambos os membros da equação ao quadrado.

2º passo: resolva a equação.

3º passo: encontre as raízes da equação do 2º grau utilizando a fórmula de Bhaskara.

Como resolver sistemas com raiz quadrada

4º passo: verificar qual a solução verdadeira para a equação.

Para x = 4:

Para a equação irracional, o valor de x é 3.

Para x = – 1.

Para a equação irracional, o valor x = – 1 não é uma solução verdadeira.

Veja também: Números Irracionais

Exercícios sobre equações irracionais (com gabarito comentado)

1. Resolva as equações irracionais em R e verifique se as raízes encontradas são verdadeiras.

a)

Como resolver sistemas com raiz quadrada

Esconder RespostaVer Resposta

Resposta correta: x = 3.

1º passo: elevar os dois termos da equação ao quadrado, eliminar a raiz e resolver a equação.

2º passo: verificar se a solução é verdadeira.

Como resolver sistemas com raiz quadrada

b)

Como resolver sistemas com raiz quadrada

Esconder RespostaVer Resposta

Resposta correta: x = – 3.

1º passo: isolar o radical em um lado da equação.

2º passo: elevar ambos os termos ao quadrado e resolver a equação.

3º passo: aplicar a fórmula de Bhaskara para encontrar as raízes da equação.

Como resolver sistemas com raiz quadrada

4º passo: verificar qual solução é verdadeira.

Para x = 4:

Como resolver sistemas com raiz quadrada

Para x = – 3:

Como resolver sistemas com raiz quadrada

Para os valores de x encontrados, apenas x = – 3 é a verdade solução da equação irracional.

Veja também: Fórmula de Bhaskara

2. (Ufv/2000) Sobre a equação irracional é CORRETO afirmar que:

a) não possui raízes reais. b) possui apenas uma raiz real. c) possui duas raízes reais distintas. d) é equivalente a uma equação do 2º grau.

e) é equivalente a uma equação do 1° grau.

Esconder RespostaVer Resposta

Alternativa correta: a) não possui raízes reais.

1º passo: elevar os dois termos ao quadrado.

2º passo: resolver a equação.

3º passo: verificar se a solução é verdadeira.

Como o valor de x encontrado não satisfaz a solução da equação irracional, não há raízes reais.