Why are the drugs neostigmine and pyridostigmine helpful to the person with myasthenia gravis?

KindProteinOrganismHumansPharmacological action

Yes

Actions

Inhibitor

General FunctionSerine hydrolase activitySpecific FunctionTerminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.Gene NameACHEUniprot IDP22303Uniprot NameAcetylcholinesteraseMolecular Weight67795.525 Da

  1. Trevisani GT, Hyman NH, Church JM: Neostigmine: safe and effective treatment for acute colonic pseudo-obstruction. Dis Colon Rectum. 2000 May;43(5):599-603. [Article]
  2. Naves LA, Van der Kloot W: Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular junction. J Physiol. 2001 May 1;532(Pt 3):637-47. [Article]
  3. Takeuchi K, Kawauchi S, Araki H, Ueki S, Furukawa O: Stimulation by nizatidine, a histamine H(2)-receptor antagonist, of duodenal HCO(3)(-)secretion in rats:relation to anti-cholinesterase activity. World J Gastroenterol. 2000 Oct;6(5):651-658. [Article]
  4. Minic J, Chatonnet A, Krejci E, Molgo J: Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions. Br J Pharmacol. 2003 Jan;138(1):177-87. [Article]
  5. Beck KD, Brennan FX, Moldow RL, Ottenweller JE, Zhu G, Servatius RJ: Stress interacts with peripheral cholinesterase inhibitors to cause central nervous system effects. Life Sci. 2003 May 23;73(1):41-51. [Article]
  6. Zhang B, Hepner DL, Tran MH, Friedman M, Korn JR, Menzin J: Neuromuscular blockade, reversal agent use, and operating room time: retrospective analysis of US inpatient surgeries. Curr Med Res Opin. 2009 Apr;25(4):943-50. doi: 10.1185/03007990902769054 . [Article]
  7. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]

1. Gilhus NE. Myasthenia gravis. N Engl J Med. (2016) 375:2570–81. 10.1056/NEJMra1602678 [PubMed] [CrossRef] [Google Scholar]

2. Evoli A. Myasthenia gravis: new developments in research and treatment. Curr Opin Neurol. (2017) 30:464–70. 10.1097/WCO.0000000000000473 [PubMed] [CrossRef] [Google Scholar]

3. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia Gravis. Nat Rev Dis Primers. (2019) 5:30. 10.1038/s41572-019-0079-y [PubMed] [CrossRef] [Google Scholar]

4. Jaretzki A, III, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al.. Myasthenia gravis: recommendations for clinical research standards. Task force of the medical scientific advisory board of the myasthenia gravis foundation of America. Ann Thorac Surg. (2000) 70:327–34. 10.1016/s0003-4975(00)01595-2 [PubMed] [CrossRef] [Google Scholar]

5. McCarter SJ, Burkholder DB, Klaas JP, Martinez-Thompson JM, Boes CJ. The mary walker effect: mary broadfoot walker. J R Coll Phys Edinb. (2019) 49:255–9. 10.4997/JRCPE.2019.317 [PubMed] [CrossRef] [Google Scholar]

6. Osserman KE, Teng P, Kaplan L. Studies in myasthenia gravis; preliminary report on therapy with mestinon bromide. J Am Med Assoc. (1954) 155:961–5. 10.1001/jama.1954.03690290011004 [PubMed] [CrossRef] [Google Scholar]

7. Maggi L, Mantegazza R. Treatment of myasthenia gravis: focus on pyridostigmine. Clin Drug Investig. (2011) 31:691–701. 10.2165/11593300-000000000-00000 [PubMed] [CrossRef] [Google Scholar]

8. Ohbe H, Jo T, Matsui H, Fushimi K, Yasunaga H. Cholinergic crisis caused by cholinesterase inhibitors: a retrospective nationwide database study. J Med Toxicol. (2018) 14:237–41. 10.1007/s13181-018-0669-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Gravino D, McNierney-Moorem A. Neostigmine: not only for the operating room. J Emerg Nurs. (2018) 44:94–6. 10.1016/j.jen.2017.09.004 [PubMed] [CrossRef] [Google Scholar]

10. Hindmarsh J, Woods E, Lee M, Pickard J. Administering neostigmine as a subcutaneous infusion: a case report of a patient dying with myasthenia gravis. J Palliat Care. (2020) 35:78–81. 10.1177/0825859719869353 [PubMed] [CrossRef] [Google Scholar]

11. Vanhaesebrouck AE, Webster R, Maxwell S, Rodriguez Cruz PM, Cossins J, Wickens J, et al.. ß 2-Adrenergic receptor agonists ameliorate the adverse effect of long-term pyridostigmine on neuromuscular junction structure. Brain. (2019) 142:3713–27. 10.1093/brain/awz322 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Evoli A, Alboini PE, Damato V, Iorio R, Provenzano C, Bartoccioni E, et al.. Myasthenia gravis with antibodies to MuSK: an update. Ann N Y Acad Sci. (2018) 1412:82–9. 10.1111/nyas.13518 [PubMed] [CrossRef] [Google Scholar]

13. Bonanno S, Pasanisi MB, Frangiamore R, Maggi L, Antozzi C, Andreetta F, et al.. Amifampridine phosphate in the treatment of muscle-specific kinase myasthenia gravis: a phase IIb, randomized, double-blind, placebo-controlled, double-crossover study. SAGE Open Med. (2018) 6:2050312118819013. 10.1177/2050312118819013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Lipka AF, Vrinten C, van Zwet EW, Schimmel KJ, Cornel MC, Kuijpers MR, et al.. Ephedrine treatment for autoimmune myasthenia gravis. Neuromuscul Disord. (2017) 27:259–65. 10.1016/j.nmd.2016.11.009 [PubMed] [CrossRef] [Google Scholar]

15. Sanders DB, Rosenfeld J, Dimachkie MM, Meng L, Malik FI, Tirasemtiv in Myasthenia Gravis Study Group . A double-blinded, randomized, placebo-controlled trial to evaluate efficacy, safety and tolerability of single doses of Tirasemtiv in patients with acetylcholine receptor-binding antibody-positive myasthenia gravis. Neurotherapeutics. (2015) 12:455–60. 10.1007/s13311-015-0345-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Sussman J, Farrugia ME, Maddison P, Hill M, Leite MI, Hilton-Jones D. Myasthenia gravis: association of British neurologists' management guidelines. Pract Neurol. (2015) 15:199–206. 10.1136/practneurol-2015-001126 [PubMed] [CrossRef] [Google Scholar]

17. Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al.. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. (2016) 87:419–25. 10.1212/WNL.0000000000002790 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Kanai T, Uzawa A, Kawaguchi N, Oda F, Ozawa Y, Humuro K, et al.. Predictive score for oral corticosteroid-induced initial worsening of seropositive generalized myasthenia gravis. J Neurol Sci. (2019) 396:8–11. 10.1016/j.jns.2018.10.018 [PubMed] [CrossRef] [Google Scholar]

19. Utsugisawa K, Nagane Y, Akaishi T, Suzuki Y, Imai T, Tsuda E, et al.. Early fast-acting treatment strategy against generalized myasthenia gravis. Muscle Nerve. (2017) 55:794–801. 10.1002/mus.25397 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Murai H, Utsugisawa K, Nagane Y, Suzuki S, Imai T, Motomura M. Rationale for the clinical guidelines for myasthenia gravis in Japan. Ann NY Acad Sci. (2018) 1413:35–40. 10.1111/nyas.13544 [PubMed] [CrossRef] [Google Scholar]

21. Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia gravis study group. Neurology. (1998) 50:1778–83. 10.1212/WNL.50.6.1778 [PubMed] [CrossRef] [Google Scholar]

22. Sussman J, Farrugia ME, Maddison P, Hill M, Leite MI, Hilton-Jones D. The association of British neurologists' myasthenia gravis guidelines. Ann NY Acad Sci. (2018) 1412:166–9. 10.1111/nyas.13503 [PubMed] [CrossRef] [Google Scholar]

23. Abuzinadah AR, Jabari D, Jawdat O, Pasnoor M, Glenn M, Herbelin L, et al.. Satisfactory response with achieving maintenance low-dose prednisone in generalized myasthenia gravis. J Clin Neuromuscul Dis. (2018) 20:49–59. 10.1097/CND.0000000000000219 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Lorenzoni PJ, Kay CSK, Zanlorenzi MF, Ducci RD, Werneck LC, Scola RH. Myasthenia gravis and azathioprine treatment: adverse events related to thiopurine S-methyltransferase (TPMT) polymorphisms. J Neurol Sci. (2020) 412:116734. 10.1016/j.jns.2020.116734 [PubMed] [CrossRef] [Google Scholar]

25. Ciafaloni E, Massey JM, Tucker-Lipscomb B, Sanders DB. Mycophenolate mofetil for myasthenia gravis: an open-label pilot study. Neurology. (2001) 56:97–99. 10.1212/WNL.56.1.97 [PubMed] [CrossRef] [Google Scholar]

26. Sanders DB, Hart IK, Mantegazza R, Shukla SS, Siddiqi ZA, De Baets H, et al.. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. (2008) 71:400–6. 10.1212/01.wnl.0000312374.95186.cc [PubMed] [CrossRef] [Google Scholar]

27. Hehir MK, Burns TM, Slpers J, Conaway MR, Sawa M, Sanders DB. Mycophenolate mofetil in AChR-antibody positive myasthenia gravis: outcomes in 102 patients. Muscle Nerve. (2010) 41:593–8. 10.1002/mus.21640 [PubMed] [CrossRef] [Google Scholar]

28. Pasnoor M, He J, Herbelin L, Burns TM, Nations S, Bril V, et al.. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology. (2016) 87:57–64. 10.1212/WNL.0000000000002795 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Lavrnic D, Vujic A, Rakocevic-Stojanovic V, Stevic Z, Basta I, Pavlovic S, et al.. Cyclosporine in the treatment of myasthenia gravis. Acta Neurol Scand. (2005) 111:247–52. 10.1111/j.1600-0404.2005.00378.x [PubMed] [CrossRef] [Google Scholar]

30. Cruz JL, Wolff ML, Vanderman AJ, Brown JN. The emerging role of tacrolimus in myasthenia gravis. Ther Adv Neurol Disord. (2015) 8:92–103. 10.1177/1756285615571873 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. De Feo LG, Schottlender J, Martelli NA, Molfino NA. Use of intravenous pulsed cyclophosphamide in severe, generalized myasthenia gravis. Muscle Nerve. (2002) 26:31–36. 10.1002/mus.10133 [PubMed] [CrossRef] [Google Scholar]

32. Hohlfeld R, Toyka KV, Besinger UA, Gerhold B, Heininger K. Myasthenia gravis: reactivation of clinical disease and of autoimmune factors after discontinuation of long-term azathioprine. Ann Neurol. (1985) 17:238–42. 10.1002/ana.410170304 [PubMed] [CrossRef] [Google Scholar]

33. Oskarsson B, Rocke DM, Dengel K, Richman DP. Myasthenia gravis exacerbation after discontinuing mycophenolate: a single-center cohort study. Neurology. (2016) 86:1159–63. 10.1212/WNL.0000000000002405 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Hobson-Webb LD, Hehir M, Crum B, Visser A, Sanders DB, Burns TM. Can mycophenolate mofetil be tapered safely in myasthenia gravis? A retrospective, multicentre analysis. Muscle Nerve. (2015) 52:211–5. 10.1002/mus.24694 [PubMed] [CrossRef] [Google Scholar]

35. Schumacher C, Roth J. Thymektomie bei einem fall von morbus basedowi mit myasthenie [thymectomy in a case of graves' disease with myasthenia]. Mitt Grenzgeb Med Chir. (1912) 25:746–65. [Google Scholar]

36. Blalock A, Mason MF, Morgan HJ, Riven SS. Myasthenia gravis and tumors of the thymic region: report of a case in which the tumor was removed. Ann Surg. (1939) 110:544–61. 10.1097/00000658-193910000-00005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al.. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. (2016) 375:511–22. 10.1056/NEJMc1611704 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al.. Long-term effect of thymectomy plus prednisone versus prednisone alone in patients with non-thymomatous myasthenia gravis: 2-year extension of the MGTX randomised trial. Lancet Neurol. (2019) 18:259–68. 10.1016/S1474-4422(18)30392-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Coosemans W, Lerut TE, Van Raemdonck DE. Thoracoscopic surgery: the belgian experience. Ann Thorac Surg. (1993) 56:721–30. 10.1016/0003-4975(93)90963-I [PubMed] [CrossRef] [Google Scholar]

40. Kaiser LR. Thymoma. The use of minimally invasive resection techniques. Chest Surg Clin N Am. (1994) 4:185–94. [PubMed] [Google Scholar]

41. Novellino L, Longoni M, Spinelli L, Andretta M, Cozzi M, Faillace G. Extended thymectomy, without sternotomy, performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis. Int Surg. (1994) 79:378–81. [PubMed] [Google Scholar]

42. Ashton RC, Jr, McGinnis KM, Connery CP, Swistel DG, Ewing DR, DeRose JJ, Jr, et al.. Totally endoscopic robotic thymectomy for myasthenia gravis. Ann Thorac Surg. (2003) 75:569–71. 10.1016/S0003-4975(02)04296-0 [PubMed] [CrossRef] [Google Scholar]

43. O'Sullivan KE, Kreaden US, Hebert AE, Eaton D, Redmond KC. A systematic review of robotic versus open and video assisted thoracoscopic surgery (VATS) approaches for thymectomy. Ann Cardiothorac Surg. (2019) 8:174–93. 10.21037/acs.2019.02.04 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Siwachat S, Tantraworsasin A, Lapisatepun W, Ruengorn C, Taioli E, Saeteng S. Comparative clinical outcomes after thymectomy for myasthenia gravis: thoracoscopic versus trans-sternal approach. Asian J Surg. (2018) 41:77–85. 10.1016/j.asjsur.2016.09.006 [PubMed] [CrossRef] [Google Scholar]

45. Gu Z, Chen C, Wang Y, Wei Y, Fu J, Zhang P, et al.. Video-assisted thoracoscopic surgery versus open surgery for Stage I thymic epithelial tumours: a propensity score-matched study. Eur J Cardiothorac Surg. (2018) 54:1037–44. 10.1093/ejcts/ezy239 [PubMed] [CrossRef] [Google Scholar]

46. Marulli G, Comacchio GM, Schiavon M, Rebusso A, Mammana M, Zampieri D, et al.. Comparing robotic and trans-sternal thymectomy for early-stage thymoma: a propensity score-matching study. Eur J Cardiothorac Surg. (2018) 54:579–84. 10.1093/ejcts/ezy075 [PubMed] [CrossRef] [Google Scholar]

47. Weng W, Li X, Meng S, Liu X, Peng P, Wang Z, et al.. Video-assisted thoracoscopic thymectomy is feasible for large thymomas: a propensity-matched comparison. Interact Cardiovasc Thorac Surg. (2020) 30:565–72. 10.1093/icvts/ivz320 [PubMed] [CrossRef] [Google Scholar]

48. Abt PL, Patel HJ, Marsh A, Schwartz SI. Analysis of thymectomy for myasthenia gravis in older patients: a 20-year single institution experience. J Am Coll Surg. (2001) 192:459–64. 10.1016/S1072-7515(01)00795-5 [PubMed] [CrossRef] [Google Scholar]

49. Kim SW, Choi YC, Kim SM, Shim HS, Shin HY. Effect of thymectomy in elderly patients with non-thymomatous generalized myasthenia gravis. J Neurol. (2019) 266:960–68. 10.1007/s00415-019-09222-2 [PubMed] [CrossRef] [Google Scholar]

50. Clifford KM, Hobson-Webb LD, Benatar M, Burns TM, Barnett C, Silvestri J, et al.. Thymectomy may not be associated with clinical improvement in MuSK myasthenia gravis. Muscle Nerve. (2019) 59:404–10. 10.1002/mus.26404 [PubMed] [CrossRef] [Google Scholar]

51. Koneczny I, Rennspiess D, Marcuse F, Dankerlui N, Abdul Hamid M, Mané-Damas M, et al.. Characterization of the thymus in Lrp4 myasthenia gravis: four cases. Autoimmun Rev. (2019) 18:50–55. 10.1016/j.autrev.2018.07.011 [PubMed] [CrossRef] [Google Scholar]

52. Leite MI, Jones M, Ströbel P, Marx A, Gold R, Niks E, et al.. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol. (2007) 171:893–905. 10.2353/ajpath.2007.070240 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Giannopoulou A, Gkiozos I, Harrington KJ, Syrigos KN. Thymoma and radiation therapy: a systematic review of medical treatment. Expert Rev Anticancer Ther. (2013) 13:759–66. 10.1586/era.13.54 [PubMed] [CrossRef] [Google Scholar]

54. Jackson MW, Palma DA, Camidge DR, Jones BL, Robin TF, Sher J, et al.. The impact of postoperative radiotherapy for thymoma and thymic carcinoma. J Thorac Oncol. (2017) 12:734–44. 10.1016/j.jtho.2017.01.002 [PubMed] [CrossRef] [Google Scholar]

55. Berghmans T, Durieux V, Holbrechts S, Jungels C, Lafitte JJ, Meert AP, et al.. Systemic treatments for thymoma and thymic carcinoma: a systematic review. Lung Cancer. (2018) 126:25–31. 10.1016/j.lungcan.2018.10.018 [PubMed] [CrossRef] [Google Scholar]

56. Al-Haidar M, Benatar M, Kaminski HJ. Ocular myasthenia. Neurol Clin. (2018) 36:241–51. 10.1016/j.ncl.2018.01.003 [PubMed] [CrossRef] [Google Scholar]

57. Fortin E, Cestari DM, Weinberg DH. Ocular myasthenia gravis: an update on diagnosis and treatment. Curr Opin Ophthalmol. (2018) 29:477–84. 10.1097/ICU.0000000000000526 [PubMed] [CrossRef] [Google Scholar]

58. Sanders DB, Arimura K, Cui L, Ertas M, Farrugia ME, Gilchrist J, et al.. Guidelines for single fiber EMG. Clin Neurophysiol. (2019) 130:1417–39. 10.1016/j.clinph.2019.04.005 [PubMed] [CrossRef] [Google Scholar]

59. Evoli A, Batocchi P, Minisci C, Di Schino C, Tonali P. Therapeutic options in ocular myasthenia gravis. Neuromuscul Disord. (2001) 11:208–16. 10.1016/S0960-8966(00)00173-5 [PubMed] [CrossRef] [Google Scholar]

60. Bruce BB, Kupersmith MJ. Safety of prednisone for ocular myasthenia gravis. J Neuroophthalmol. (2012) 32:212–5. 10.1097/WNO.0b013e3182536558 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Haines SR, Thurtell MJ. Treatment of ocular myasthenia gravis. Curr Treat Opt Neurol. (2012) 14:103–12. 10.1007/s11940-011-0151-8 [PubMed] [CrossRef] [Google Scholar]

62. Kerty E, Elsais A, Argov Z, Evoli A, Gilhus NE. EFNS/ENS guidelines for the treatment of ocular myasthenia. Eur J Neurol. (2014) 21:687–93. 10.1111/ene.12359 [PubMed] [CrossRef] [Google Scholar]

63. Benatar M, Mcdermott MP, Sanders DB, Wolfe GI, Barohn RJ, Nowak J, et al.. Efficacy of prednisone for the treatment of ocular myasthenia (EPITOME): a randomized, controlled trial. Muscle Nerve. (2016) 53:363–9. 10.1002/mus.24769 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Kupersmith MJ. Ocular myasthenia gravis: treatment successes and failures in patients with long-term follow-up. J Neurol. (2009) 256:1314–20. 10.1007/s00415-009-5120-8 [PubMed] [CrossRef] [Google Scholar]

65. Mittal MK, Barohn RJ, Pasnoor M, McVey A, Herbelin L, Whittaker T, et al.. Ocular myasthenia gravis in an academic neuro-ophthalmology clinic: clinical features and therapeutic response. J Clin Neuromuscul Dis. (2011) 13:46–52. 10.1097/CND.0b013e31821c5634 [PubMed] [CrossRef] [Google Scholar]

66. Europa TA, Nel M, Heckmann JM. Myasthenic ophthalmoparesis: time to resolution after initiating immune therapies. Muscle Nerve. (2018) 58:542–9. 10.1002/mus.26172 [PubMed] [CrossRef] [Google Scholar]

67. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds R, et al.. Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci USA. (2001) 98:12062–7. 10.1073/pnas.211257298 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Serra A, Ruff R, Kaminski H, Leigh RJ. Factors contributing to failure of neuromuscular transmission in myasthenia gravis and the special case of the extraocular muscles. Ann NY Acad Sci. (2011) 1233:26–33. 10.1111/j.1749-6632.2011.06123.x [PubMed] [CrossRef] [Google Scholar]

69. Zhou Y, Liu D, Kaminski HJ. Myosin heavy chain expression in mouse extraocular muscle: more complex than expected. Invest Ophthalmol Vis Sci. (2010) 51:6355–63. 10.1167/iovs.10-5937 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Soltys J, Gong B, Kaminski HJ, Zhou Y, Kusner LL. Extraocular muscle susceptibility to myasthenia gravis: unique immunological environment? Ann NY Acad Sci. (2008) 1132:220–4. 10.1196/annals.1405.037 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Europa TA, Nel M, Heckmann JM. A review of the histopathological findings in myasthenia gravis: clues to the pathogenesis of treatment-resistance in extraocular muscles. Neuromuscul Disord. (2019) 29:381–7. 10.1016/j.nmd.2019.03.009 [PubMed] [CrossRef] [Google Scholar]

72. Benatar M, Kaminski HJ. Medical and surgical treatment for ocular myasthenia. Cochrane Database Syst Rev. (2012) 12:CD005081. 10.1002/14651858.CD005081.pub3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Jampolsky A. Ocular divergence mechanisms. Trans Am Ophthalmol Soc. (1970) 68:730–822. [PMC free article] [PubMed] [Google Scholar]

74. Vivian AJ, Morris RJ. Diagrammatic representation of strabismus. Eye (Lond.). (1993) 7:565–71. 10.1038/eye.1993.123 [PubMed] [CrossRef] [Google Scholar]

75. Farrugia ME, Cleary M, Carmichael C. A retrospective study of acetylcholine receptor antibody positive ocular myasthenia in the West of Scotland. J Neurol Sci. (2017) 382:84–86. 10.1016/j.jns.2017.09.036 [PubMed] [CrossRef] [Google Scholar]

76. Brogan K, Crofts K, Farrugia ME. Ptosis surgery in patients with myasthenia gravis- a useful adjunct to medical therapy. Semin Ophthalmol. (2018) 33:429–34. 10.1080/08820538.2017.1284871 [PubMed] [CrossRef] [Google Scholar]

77. Watts J, Brew B, Tisch S. Myasthenia gravis exacerbation with low dose ocular botulinum toxin for epiphoria. J Clin Neurosci. (2015) 22:1979–81. 10.1016/j.jocn.2015.05.032 [PubMed] [CrossRef] [Google Scholar]

78. Nakamura H, Taniguchi Y, Suzuki Y, Tanaka Y, Ishiguro K, Fukuda M, et al.. Delayed remission after thymectomy for myasthenia gravis of the purely ocular type. J Thorac Cardiovasc Surg. (1996) 112:371–5. 10.1016/S0022-5223(96)70264-7 [PubMed] [CrossRef] [Google Scholar]

79. Roberts PF, Venuta F, Rendina E, De Giacomo T, Coloni GF, Follette DM, et al.. Thymectomy in the treatment of ocular myasthenia gravis. J Thorac Cardiovasc Surg. (2001) 122:562–8. 10.1067/mtc.2001.116191 [PubMed] [CrossRef] [Google Scholar]

80. Liu Z, Feng H, Yeung SC, Zheng Z, Liu W, Ma J, et al.. Extended transsternal thymectomy for the treatment of ocular myasthenia gravis. Ann Thorac Surg. (2011) 92:1993–9. 10.1016/j.athoracsur.2011.08.001 [PubMed] [CrossRef] [Google Scholar]

81. Mineo TC, Ambrogi V. Outcomes after thymectomy in class I myasthenia gravis. J Thorac Cardiovasc Surg. (2013) 145:1319–24. 10.1016/j.jtcvs.2012.12.053 [PubMed] [CrossRef] [Google Scholar]

82. Zhu K, Li J, Huang X, Xu W, Liu W, Chen J, et al.. Thymectomy is a beneficial therapy for patients with non-thymomatous ocular myasthenia gravis: a systematic review and meta-analysis. Neurol Sci. (2017) 38:1753–60. 10.1007/s10072-017-3058-7 [PubMed] [CrossRef] [Google Scholar]

83. Batocchi AP, Majolini L, Evoli A, Lino MM, Minisci C, Tonali P. Course and treatment of myasthenia gravis during pregnancy. Neurology. (1999) 52:447–52. 10.1212/WNL.52.3.447 [PubMed] [CrossRef] [Google Scholar]

84. Plauché WC. Myasthenia gravis in mothers and their newborns. Clin Obstet Gynecol. (1991) 34:82–99. 10.1097/00003081-199103000-00012 [PubMed] [CrossRef] [Google Scholar]

85. Norwood F, Dhanjal M, Hill M, James N, Jungbluth H, Kyle P, et al.. Myasthenia in pregnancy : best practice guidelines for a UK multispecialty working group. J Neurol Neurosurg Psychiatry. (2014) 85:538–43. 10.1136/jnnp-2013-305572 [PubMed] [CrossRef] [Google Scholar]

86. Gilhus NE, Hong Y. Maternal myasthenia gravis represents a risk for the child through autoantibody transfer, immunosuppressive therapy and genetic influence. Eur J Neurol. (2018) 25:1402–9. 10.1111/ene.13788 [PubMed] [CrossRef] [Google Scholar]

87. Hamel J, Ciafaloni E. An update: myasthenia gravis and pregnancy. Neurol Clin. (2018) 36:355–65. 10.1016/j.ncl.2018.01.005 [PubMed] [CrossRef] [Google Scholar]

88. Hoff JM, Daltveit AK, Gilhus NE. Myasthenia gravis. Consequences for pregnancy, delivery and the newborn. Neurology. (2003) 61:1362–6. 10.1212/01.WNL.0000082725.21444.EC [PubMed] [CrossRef] [Google Scholar]

89. Ducci RD, Lorenzoni PJ, Kay CS, Werneck LC, Scola RH. Clinical follow-up of pregnancy in myasthenia gravis patients. Neuromuscul Disord. (2017) 27:352–7. 10.1016/j.nmd.2017.01.021 [PubMed] [CrossRef] [Google Scholar]

90. Tsurane K, Tanabe S, Miyaska N, Matsuda M, Takahara M, Ida T, et al.. Management of labor and delivery in myasthenia gravis: a new protocol. J. Obstet. Gynaecol. Res. (2019) 45:974–980. 10.1111/jog.13922 [PubMed] [CrossRef] [Google Scholar]

91. Papazian O. Transient neonatal myasthenia gravis. J. Child Neurol. (1992) 7:135–41. 10.1177/088307389200700202 [PubMed] [CrossRef] [Google Scholar]

92. Hacohen Y, Jacobson LW, Byrne S, Norwood F, Lall A, Robb S, et al.. Fetal acetylcholine receptor inactivation syndrome: a myopathy due to maternal antibodies. Neurol Neuroimmunol Neuroinflamm. (2014) 2:e57. 10.1212/NXI.0000000000000057 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. O'Riordan JI, Miller DH, Mottershead JP, Hirsch NP, Howard RS. The management and outcome of patients with myasthenia gravis treated acutely in a neurological intensive care unit. Eur J Neurol. (1998) 5:137–42. 10.1046/j.1468-1331.1998.520137.x [PubMed] [CrossRef] [Google Scholar]

94. Rabinstein AA, Mueller-Kronast N. Risk of extubation failure in patients with myasthenic crisis. Neurocrit Care. (2005) 3:213–15. 10.1385/NCC:3:3:213 [PubMed] [CrossRef] [Google Scholar]

95. Dhawan PS, Goodman BP, Harper CM, Bosch PE, Hoffman-Snyder CR, Wellik E, et al.. IVIG versus PLEX in the treatment of worsening myasthenia gravis: what is the evidence? A critically appraised topic. Neurologist. (2015) 19:145–8. 10.1097/NRL.0000000000000026 [PubMed] [CrossRef] [Google Scholar]

96. Qureshi AI, Choudhry MA, Akbar MS, Mohammad Y, Chua HC, Yahia M, et al.. Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis. Neurology. (1999) 52:629–32. 10.1212/WNL.52.3.629 [PubMed] [CrossRef] [Google Scholar]

97. Heatwole C, Johnson N, Holloway R, Noyes K. Plasma exchange versus intravenous immunoglobulin for myasthenia gravis crisis: an acute hospital cost comparison study. J Clin Neuromuscul Dis. (2011) 13:85–94. 10.1097/CND.0b013e31822c34dd [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Guptill JT, Oakley D, Kuchibhatla M, Guidon AC, Hobson-Webb L, Massey M, et al.. A Retrospective study of complications of therapeutic plasma exchange in myasthenia. Muscle Nerve. (2013) 47:170–6. 10.1002/mus.23508 [PubMed] [CrossRef] [Google Scholar]

99. Wendell LC, Levine JM. Myasthenic crisis. Neurohospitalist. (2011) 1:16–22. 10.1177/1941875210382918 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Matsuda M, Dohi-Iijima N, Nakamura A, Sekijima Y, Morita H, Matsuzawa S, et al.. Increase in incidence of elderly-onset patients with myasthenia gravis in nagano prefecture. Jpn Intern Med. 44:572–7. 10.2169/internalmedicine.44.572 [PubMed] [CrossRef] [Google Scholar]

101. Alkhawajah NM, Oger J. Late-onset myasthenia gravis: a review when incidence in older adults keeps increasing. Muscle Nerve. (2013) 48:705–10. 10.1002/mus.23964 [PubMed] [CrossRef] [Google Scholar]

102. Maddison P, Ambrose PA, Sadalage G, Vincent A. A prospective study of the incidence of myasthenia gravis in the east midlands of England. Neuroepidemiology. (2019) 53:93–99. 10.1159/000500268 [PubMed] [CrossRef] [Google Scholar]

103. Breiner A, Widdifield J, Katzberg HD, Barnett C, Bril V, Tu K. Epidemiology of myasthenia gravis in Ontario, Canada. Neuromuscul Disord. (2016) 26:41–6. 10.1016/j.nmd.2015.10.009 [PubMed] [CrossRef] [Google Scholar]

104. Aragonès JM, Altimiras J, Roura P, Alonso F, Bufill E, Munmany A, et al.. Prevalence of myasthenia gravis in the catalan county of Osona. Neurologia. (2017) 32:1–5. 10.1016/j.nrleng.2014.09.010 [PubMed] [CrossRef] [Google Scholar]

105. Phillips LH, II. The epidemiology of myasthenia gravis. Neurol Clin. (1994) 12:263–71. 10.1016/S0733-8619(18)30096-3 [PubMed] [CrossRef] [Google Scholar]

106. Aarli JA. Late-onset myasthenia gravis: a changing scene. Arch Neurol. (1999) 56:25–7. 10.1001/archneur.56.1.25 [PubMed] [CrossRef] [Google Scholar]

107. Nishikawa N, Nagai M, Tsujii T, Kyaw WT, Tanabe N, Iwaki H, et al.. Treatment of myasthenia gravis in patients with elderly onset at advanced age. Jpn Clin Med. (2015) 6:9–13. 10.4137/JCM.S29601 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Yeh JH, Chen HJ, Chen YK, Chiu HC, Kao CH. Increased risk of osteoporosis in patients with myasthenia gravis: a population-based cohort study. Neurology. (2014) 83:1075–9. 10.1212/WNL.0000000000000804 [PubMed] [CrossRef] [Google Scholar]

109. Marino M, Bartoccioni E, Alboini PE, Evoli A. Rituximab in myasthenia gravis: a “to be or not to be” inhibitor of T cell function. Ann NY Acad Sci. (2018) 1413:41–48. 10.1111/nyas.13562 [PubMed] [CrossRef] [Google Scholar]

110. Beecher G, Anderson D, Siddiqi ZA. Rituximab in refractory myasthenia gravis: extended prospective study results. Muscle Nerve. (2018) 58:452–5. 10.1002/mus.26156 [PubMed] [CrossRef] [Google Scholar]

111. Landon-Cardinal O, Friedman D, Guiguet M, Laforêt P, Heming N, Salort –Campana E, et al.. Efficacy of rituximab in refractory generalized anti-AChR myasthenia gravis. J Neuromuscul Dis. (2018) 5:241–9. 10.3233/JND-180300 [PubMed] [CrossRef] [Google Scholar]

112. Topakian R, Zimprich F, Iglesder S, Embacher N, Guger M, Stieglbauer K, et al.. High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. J Neurol. (2019) 266:699–706. 10.1007/s00415-019-09191-6 [PubMed] [CrossRef] [Google Scholar]

113. Díaz-Manera J, Martínez-Hernández E, Querol L, Klooster R, Rojas-Garcia R, Suárez-Calvet X, et al.. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. (2012) 78:189–93. 10.1212/WNL.0b013e3182407982 [PubMed] [CrossRef] [Google Scholar]

114. Brauner S, Eriksson-Dufva A, Hietala MA, Friselli I, Press R, Piehl F. Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol. (2020). [Epub ahead of print]. 10.1001/jamaneurol.2020.0851 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Hofer S, Viollier R, Ludwig C. Delayed-onset and long-lasting severe neutropenia due to rituximab. Swiss Med Wkly. (2004) 134:79–80. [PubMed] [Google Scholar]

116. Mitsuhata N, Fujita R, Ito S, Mannami M, Keimei K. Delayed-onset neutropenia in a patient receiving rituximab as treatment for refractory kidney transplantation. Transplantation. (2005) 80:1355. 10.1097/01.tp.0000184275.81396.45 [PubMed] [CrossRef] [Google Scholar]

117. Motl SE, Baskin RC. Delayed-onset grade 4 neutropenia associated with rituximab therapy in a patient with lymphoma: case report and literature review. Pharmacotherapy. (2005) 25:1151–5. 10.1592/phco.2005.25.8.1151 [PubMed] [CrossRef] [Google Scholar]

118. Tandan R, Hehir MK, II, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve. (2017) 56:185–96. 10.1002/mus.25597 [PubMed] [CrossRef] [Google Scholar]

119. Di Stefano V, Lupica A, Rispoli MG, Di Muzio A, Brighina F, Rodolico C. Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry. (2020) 91:392–5. 10.1136/jnnp-2019-322606 [PubMed] [CrossRef] [Google Scholar]

120. Howard JF, Jr, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al.. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generlaized myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multi-centre study. Lancet Neurol. (2017) 16:976–86. 10.1016/S1474-4422(17)30369-1 [PubMed] [CrossRef] [Google Scholar]

121. Muppidi S, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al.. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. (2019) 60:14–24. 10.1002/mus.26447 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Andersen H, Mantegazza R, Wang JJ, O'Brien F, Patra K, Howard F, Jr, et al.. Eculizumab improves fatigue in refractory generalized myasthenia gravis. Qual Life Res. (2019) 28:2247–54. 10.1007/s11136-019-02148-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Gilhus NE. Eculizumab: a treatment option for myasthenia gravis? Lancet Neurol. (2017) 16:947–8. 10.1016/S1474-4422(17)30363-0 [PubMed] [CrossRef] [Google Scholar]

124. Howard JF, Jr, Nowak RJ, Wolfe GI, Freimer ML, Vu TH, Hinton JL, et al.. (2020) Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 77:582–92. 10.1001/jamaneurol.2019.5125 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Howard JF, Jr, Bril V, Burns TM, Mantegazza R, Biliniska M, Szczudlik A, et al.. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. (2019) 92:e2661–73. 10.1212/WNL.0000000000007600 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Cengiz Seval G, Beksac M. The safety of bortezomib for the treatment of multiple myeloma. Expert Opin Drug Saf. (2018) 17:953–62. 10.1080/14740338.2018.1513487 [PubMed] [CrossRef] [Google Scholar]

127. Guerrero-Garcia TA, Mogollon RJ, Castillo JJ. Bortezomib in plasmablastic lymphoma: a glimpse of hope for a hard-to-treat disease. Leuk Res. (2017) 62:12–16. 10.1016/j.leukres.2017.09.020 [PubMed] [CrossRef] [Google Scholar]

128. Schneider-Gold C, Reinacher-Schick A, Ellrichmann G, Gold R. Bortezomib in severe MuSK-antibody positive myasthenia gravis: first clinical experience. Ther Adv Neurol Disord. (2017) 10:339–41. 10.1177/1756285617721093 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Féasson L, Camdessanché JP, El Mandhi L, Calmels P, Millet GY. Fatigue and neuromuscular diseases. Ann Readapt Med Phys. (2006) 49:289–300. 10.1016/j.annrmp.2006.04.016 [PubMed] [CrossRef] [Google Scholar]

130. Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology. (2013) 80:409–16. 10.1212/WNL.0b013e31827f07be [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Elsais A, Wyller VB, Loge JH, Kerty E. Fatigue in myasthenia gravis: is it more than muscular weakness? BMC Neurol. (2013) 13:132. 10.1186/1471-2377-13-132 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Jordan B, Mehl T, Schweden TLK, Menge U, Zierz S. Assessment of physical fatigability and fatigue perception in myasthenia gravis. Muscle Nerve. (2017) 55:657–63. 10.1002/mus.25386 [PubMed] [CrossRef] [Google Scholar]

133. Jordan B, Schweden TLK, Mehl T, Menge U, Zierz S. Cognitive fatigue in patients with myasthenia gravis. Muscle Nerve. (2017) 56:449–57. 10.1002/mus.25540 [PubMed] [CrossRef] [Google Scholar]

134. Braz NFT, Rocha NP, Vieira ÉLM, Gomez RS, Kakehasi AM, Teixeira AL. Body composition and adipokines plasma levels in patients with myasthenia gravis treated with high cumulative glucocorticoid dose. J Neurol Sci. (2017) 381:169–75. 10.1016/j.jns.2017.08.3250 [PubMed] [CrossRef] [Google Scholar]

135. Tascilar NF, Saracli O, Kurcer MA, Ankarali H, Emre U. Is there any relationship between quality of life and polysomnographically detected sleep parameters/disorders in stable myasthenia gravis? Acta Neurol Belg. (2018) 118:29–37. 10.1007/s13760-017-0787-6 [PubMed] [CrossRef] [Google Scholar]

136. Illi J, Miaskowski C, Cooper B, Levine JD, Dunn L, West C, et al.. Association between pro- and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine. (2012) 58:437–47. 10.1016/j.cyto.2012.02.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Farrugia ME, Di Marco M, Kersel D, Carmichael C. A physical and psychological approach to managing fatigue in myasthenia gravis: a pilot study. J Neuromuscul Dis. (2018) 5:373–85. 10.3233/JND-170299 [PubMed] [CrossRef] [Google Scholar]

138. O'Connor L, Westerberg E, Punga AR. Pattern of habitual physical exercise in myasthenia gravis patients. J Neuromuscul Dis. (2019) 6:85–91. 10.3233/JND-180355 [PubMed] [CrossRef] [Google Scholar]

139. Westerberg E, Molin CJ, Linblad I, Emtner M, Punga AR. Physical exercise in myasthenia gravis is safe and improves neuromuscular parameters and physical performance-based measures: a pilot study. Muscle Nerve. (2017) 56:207–14. 10.1002/mus.25493 [PubMed] [CrossRef] [Google Scholar]

140. Westerberg E, Molin CJ, Spörndly Nees S, Widenfalk J, Punga AR. The impact of physical exercise on neuromuscular function in myasthenia gravis patients: a single-subject design study. Medicine. (2018) 97:e11510. 10.1097/MD.0000000000011510 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Voet N, Bleijenberg G, Hendriks J, de Groot I, Padberg G, van Engelen B, et al.. Both aerobic exercise and cognitive–behavioural therapy reduce chronic fatigue in FSHD: an RCT. Neurology. (2014) 83:1914–22. 10.1212/WNL.0000000000001008 [PubMed] [CrossRef] [Google Scholar]

142. van Engelen B, OPTIMISTIC Consortium. Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC): study protocol for randomised controlled trial. Trials. (2015) 16:224. 10.1186/s13063-015-0737-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Koopman FS, Brehm MA, Beelan A, Voet N, Bleijenberg G, Geurts A, et al.. Cognitive behaviour therapy for reducing fatigue in post-polio syndrome and in facioscapulohumeral dystrophy: a comparison. J Rehabil Med. (2017) 49:585–90. 10.2340/16501977-2247 [PubMed] [CrossRef] [Google Scholar]

144. Rahbek MA, Mikkelsen EE, Overgaard K, Vinge L, Andersen H, Dalgas U. Exercise in myasthenia gravis: a feasibility study of aerobic and resistance training. Muscle Nerve. (2017) 56:700–9. 10.1002/mus.25552 [PubMed] [CrossRef] [Google Scholar]

145. Sharpe M, Walker J, Williams C, Stone J, Cavanagh J, Murray G, et al.. Guided self-help for functional (psychogenic) symptoms: a randomized controlled efficacy study. Neurology. (2011) 77:564–72. 10.1212/WNL.0b013e318228c0c7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. García Rio F, Prados C, Díez Tejedor E, Díaz Lobato S, Alvarez-Sala R, Villamor J, et al.. Breathing pattern and central ventilatory drive in mild and moderate generalized myasthenia gravis. Thorax. (1994) 49:703–6. 10.1136/thx.49.7.703 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Sedeh FB, Von Bülow A, Backer V, Bodtger U, Petersen US, Vest S, et al.. The impact of dysfunctional breathing on the level of asthma control in difficult asthma. Respir Med. (2020) 163:105894. 10.1016/j.rmed.2020.105894 [PubMed] [CrossRef] [Google Scholar]

148. Andreasson KH, Skou ST, Ulrik CS, Madsen H, Sidenius K, Jacobsen JS. Protocol for a multicenter randomised controlled trial to investigate the effect on asthma-related quality of life from breathing retraining in patients with incomplete asthma control attending specialist care in Denmark. BMJ Open. (2019) 9:e032984 10.1136/bmjopen-2019-032984 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Freitag S, Hallebach S, Baumann I, Kalischewski P, Rassler B. Effects of long-term respiratory muscle endurance training on respiratory and functional outcomes in patients with myasthenia gravis. Respir Med. (2018) 144:7–15. 10.1016/j.rmed.2018.09.001 [PubMed] [CrossRef] [Google Scholar]

150. Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. (2008) 37:141–9. 10.1002/mus.20950 [PubMed] [CrossRef] [Google Scholar]

151. Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al.. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol. (1990) 237:339–44. 10.1007/BF00315656 [PubMed] [CrossRef] [Google Scholar]

152. Beghi E, Antozzi C, Batocchi AP, Cornelio F, Cosi V, Evoli A, et al.. Prognosis of myasthenia gravis: a multicentre follow-up study of 844 patients. J Neurol Sci. (1991) 106:213–20. 10.1016/0022-510X(91)90260-E [PubMed] [CrossRef] [Google Scholar]

153. Mantegazza R, Baggi F, Antozzi C, Confalonieri P, Morandi L, Bernasconi P, et al.. Myasthenia gravis (MG): epidemiological data and prognostic factors. Ann NY Acad Sci. (2003) 998:413–23. 10.1196/annals.1254.054 [PubMed] [CrossRef] [Google Scholar]

154. Yang J, Liu C, Li T, Li C. Prognosis of thymectomy in myasthenia gravis patients with thymus hyperplasia. Int J Neurosci. (2017) 127:785–9. 10.1080/00207454.2016.1257993 [PubMed] [CrossRef] [Google Scholar]