What level of transcription would you predict for a gene whose promoter is heavily methylated?

1. Almouzni, G., and A. P. Wolffe. 1993. Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 7:2033-2047. [PubMed] [Google Scholar]

2. Barry, C., G. Faugeron, and J.-L. Rossignol. 1993. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc. Natl. Acad. Sci. USA 90:4557-4561. [PMC free article] [PubMed] [Google Scholar]

3. Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. R. Broach. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7:592-604. [PubMed] [Google Scholar]

4. Cedar, H. 1988. DNA methylation and gene activity. Cell 53:3-4. [PubMed] [Google Scholar]

5. Curradi, M., A. Izzo, G. Badaracco, and N. Landsberger. 2002. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol. 22:3157-3173. [PMC free article] [PubMed] [Google Scholar]

6. Ehrlich, M., and K. C. Ehrlich. 1993. Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA, p. 145-168. In J. P. Jost and H. P. Saluz (ed.), DNA methylation: molecular biology and biological significance. Birkhauser Verlag, Basel, Switzerland.

7. Goto, T., and M. Monk. 1998. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol. Mol. Biol. Rev. 62:362-378. [PMC free article] [PubMed] [Google Scholar]

8. Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cultures. J. Mol. Biol. 26:365-369. [PubMed] [Google Scholar]

9. Hsieh, C.-L., and M. R. Lieber. 1992. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11:315-325. [PMC free article] [PubMed] [Google Scholar]

10. Hsieh, C.-L. 1994. Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14:5487-5494. [PMC free article] [PubMed] [Google Scholar]

11. Hsieh, C.-L. 1997. Stability of patch methylation and its impact in regions of transcriptional initiation and elongation. Mol. Cell. Biol. 17:5897-5904. [PMC free article] [PubMed] [Google Scholar]

12. Jones, P. L., G. J. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger, J. Strouboulis, and A. P. Wolffe. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187-191. [PubMed] [Google Scholar]

13. Kadosh, D., and K. Struhl. 1998. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18:5121-5127. [PMC free article] [PubMed] [Google Scholar]

14. Kaludov, N. K., and A. P. Wolffe. 2000. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 28:1921-1928. [PMC free article] [PubMed] [Google Scholar]

15. Kass, S. U., J. P. Goddard, and R. L. P. Adams. 1993. Inactive chromatin spreads from a focus of methylation. Mol. Cell. Biol. 13:7372-7379. [PMC free article] [PubMed] [Google Scholar]

16. Kass, S. U., N. Landsberger, and A. P. Wolffe. 1997. DNA methylation directs a time dependent repression of transcription initiation. Curr. Biol. 7:157-165. [PubMed] [Google Scholar]

17. Miller, A. P., and H. F. Willard. 1998. Chromosomal basis of X chromosome inactivation: identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proc. Natl. Acad. Sci. USA 95:8709-8714. [PMC free article] [PubMed] [Google Scholar]

18. Nan, X., H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenman, and A. Bird. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386-389. [PubMed] [Google Scholar]

19. Ng, H.-H., Y. Zhang, B. Hendrich, C. A. Johnson, B. M. Turner, H. Erdjument-Bromage, P. Tempst., D. Reinberg, and A. Bird. 1999. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23:58-61. [PubMed] [Google Scholar]

20. Rountree, M. R., and E. U. Selker. 1997. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11:2383-2395. [PMC free article] [PubMed] [Google Scholar]

21. Schubeler, D., M. C. Lorincz, D. M. Cimbora, A. Telling, Y. Q. Feng, E. E. Bouhassira, and M. Groudine. 2000. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20:9103-9112. [PMC free article] [PubMed] [Google Scholar]

22. Wade, P. A., A. Gegonne, P. L. Jones, E. Ballestar, F. Aubry, and A. P. Wolffe. 1999. Mi-2 complex couples DNA methylation to chromatin remodeling and histone deacetylation. Nat. Genet. 23:62-66. [PubMed] [Google Scholar]

23. Wigler, M., R. Sweet, G. K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. Silverstein, and R. Axel. 1979. Transformation of mammalian cells with genes from prokaryotes and eukaryotes. Cell 16:777-785. [PubMed] [Google Scholar]

24. Wu, J., and M. Grunstein. 2000. 25 years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. 25:619-623. [PubMed] [Google Scholar]


Page 2

Articles from this journal are generally available in PMC after a 6-month delay (embargo); however, the delay may vary at the discretion of the publisher.

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)