What are three mechanisms by which cancer cells become resistant to the drug methotrexate?

  1. Jacobson LO, Spurr CL, Guzman ES, Barron ES, Smith T, Lushbaugh C, Dick GF. Nitrogen mustard therapy. Studies on the Effect of Methyl-Bis (Beta-Chloroethyl) Amine Hydrochloride on Neoplastic Diseases and Allied Disorders of the Hemopoietic System. JAMA. 1946;132(5):263–71.

    CAS  Article  Google Scholar 

  2. Rhoads CP. Nitrogen mustards in the treatment of neoplastic disease. JAMA. 1946;131:656–8.

    CAS  Article  Google Scholar 

  3. Goodman LS, Wintrobe MM, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126–32.

    CAS  PubMed  Article  Google Scholar 

  4. Woodside GL, Kelton DE. Combination chemotherapy of mouse tumors with 8-azaguanine and flavotin. Cancer Res. 1955;15(6):390–3.

    CAS  PubMed  Google Scholar 

  5. Mantel N. An experimental design in combination chemotherapy. Ann N Y Acad Sci. 1958;76(3):909–14. discussion 915–31.

    CAS  PubMed  Article  Google Scholar 

  6. Frei 3rd E, et al. A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood. 1958;13(12):1126–48.

    PubMed  Google Scholar 

  7. Cree IA, et al. Chemosensitization of solid tumors by modulation of resistance mechanisms. Curr Opin Investig Drugs. 2002;3(4):634–40.

    CAS  PubMed  Google Scholar 

  8. Cree IA, et al. Chemosensitization of solid tumor cells by alteration of their susceptibility to apoptosis. Curr Opin Investig Drugs. 2002;3(4):641–7.

    CAS  PubMed  Google Scholar 

  9. Gros P, et al. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature. 1986;323(6090):728–31.

    CAS  PubMed  Article  Google Scholar 

  10. Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3(3):281–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Cree IA, et al. Correlation of the clinical response to chemotherapy in breast cancer with ex vivo chemosensitivity. Anticancer Drugs. 1996;7(6):630–5.

    CAS  PubMed  Article  Google Scholar 

  12. Di Nicolantonio F, et al. Cancer cell adaptation to chemotherapy. BMC Cancer. 2005;5:78.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Parker KA, et al. The molecular basis of the chemosensitivity of metastatic cutaneous melanoma to chemotherapy. J Clin Pathol. 2010;63(11):1012–20.

    CAS  PubMed  Article  Google Scholar 

  14. Glaysher S, et al. Molecular basis of chemosensitivity of platinum pre-treated ovarian cancer to chemotherapy. Br J Cancer. 2010;103(5):656–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Glaysher S, et al. Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC). BMC Cancer. 2009;9:300.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Bello DM, Dematteo RP, Ariyan CE. The GIST of targeted therapy for malignant melanoma. Ann Surg Oncol. 2014;21(6):2059–67.

    PubMed  PubMed Central  Article  Google Scholar 

  17. Demetri GD. Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571). Eur J Cancer. 2002;38 Suppl 5:S52–9.

    PubMed  Article  Google Scholar 

  18. Mahadevan D, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007;26(27):3909–19.

    CAS  PubMed  Article  Google Scholar 

  19. Demetri GD. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol. 2001;28(5 Suppl 17):19–26.

    CAS  PubMed  Article  Google Scholar 

  20. George S, Desai J. Management of gastrointestinal stromal tumors in the era of tyrosine kinase inhibitors. Curr Treat Options Oncol. 2002;3(6):489–96.

    PubMed  Article  Google Scholar 

  21. Antonescu CR, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11(11):4182–90.

    CAS  PubMed  Article  Google Scholar 

  22. Lasota J, Miettinen M. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol. 2006;23(2):91–102.

    PubMed  Article  Google Scholar 

  23. Wardelmann E, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res. 2006;12(6):1743–9.

    CAS  PubMed  Article  Google Scholar 

  24. Gounder MM, Maki RG. Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Cancer Chemother Pharmacol. 2011;67 Suppl 1:S25–43.

    PubMed  Article  Google Scholar 

  25. Lynch TJ, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    CAS  PubMed  Article  Google Scholar 

  26. Kobayashi S, et al. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res. 2005;65(16):7096–101.

    CAS  PubMed  Article  Google Scholar 

  27. Costa DB, et al. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin Cancer Res. 2008;14(21):7060–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Dearden S, et al. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24(9):2371–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Nazarian R, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Turajlic S, et al. Whole-genome sequencing reveals complex mechanisms of intrinsic resistance to BRAF inhibition. Ann Oncol. 2014;25(5):959–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. De P, Hasmann M, Leyland-Jones B. Molecular determinants of trastuzumab efficacy: What is their clinical relevance? Cancer Treat Rev. 2013;39(8):925–34.

    CAS  PubMed  Article  Google Scholar 

  32. Arteaga CL, et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9(1):16–32.

    CAS  Article  Google Scholar 

  33. van der Wekken AJ, et al. Resistance mechanisms after tyrosine kinase inhibitors afatinib and crizotinib in non-small cell lung cancer, a review of the literature. Crit Rev Oncol Hematol. 2016;100:107–16.

    PubMed  Article  Google Scholar 

  34. Oser MG, et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 2015;16(4):e165–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Mitiushkina NV, et al. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol. 2013;121(7):370–6.

    CAS  PubMed  Article  Google Scholar 

  36. Kim S, et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J Thorac Oncol. 2013;8(4):415–22.

    CAS  PubMed  Article  Google Scholar 

  37. Colabufo NA, et al. EGFR tyrosine kinase inhibitors and multidrug resistance: perspectives. Front Biosci (Landmark Ed). 2011;16:1811–23.

    CAS  Article  Google Scholar 

  38. Azzariti A, et al. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2010;65(2):335–46.

    CAS  PubMed  Article  Google Scholar 

  39. Satta T, et al. Expression of MDR1 and glutathione S transferase-pi genes and chemosensitivities in human gastrointestinal cancer. Cancer. 1992;69(4):941–6.

    CAS  PubMed  Article  Google Scholar 

  40. Singh S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol. 2015;75(1):1–15.

    CAS  PubMed  Article  Google Scholar 

  41. Di Pietro G, Magno LA, Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol. 2010;6(2):153–70.

    PubMed  Article  Google Scholar 

  42. Ruzza P, et al. Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem. 2009;9(7):763–77.

    CAS  PubMed  Article  Google Scholar 

  43. Hassen W, et al. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget. 2015;6(8):6431–47.

    PubMed  Article  Google Scholar 

  44. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    CAS  PubMed  Article  Google Scholar 

  45. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Harrington EA, et al. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 1994;13(14):3286–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92.

    CAS  PubMed  Article  Google Scholar 

  48. Makin G, Dive C. Modulating sensitivity to drug-induced apoptosis: the future for chemotherapy? Breast Cancer Res. 2001;3(3):150–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Cassinelli G, et al. Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells. Curr Med Chem. 2013;20(15):1923–45.

    CAS  PubMed  Article  Google Scholar 

  50. Glaysher S, et al. Activity of EGFR, mTOR and PI3K inhibitors in an isogenic breast cell line model. BMC Res Notes. 2014;7:397.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Glaysher S, et al. Targeting EGFR and PI3K pathways in ovarian cancer. Br J Cancer. 2013;109(7):1786–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Kroemer G, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11.

    CAS  PubMed  Article  Google Scholar 

  53. Notte A, Leclere L, Michiels C. Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem Pharmacol. 2011;82(5):427–34.

    CAS  PubMed  Article  Google Scholar 

  54. Morselli E, et al. Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta. 2009;1793(9):1524–32.

    CAS  PubMed  Article  Google Scholar 

  55. Su Z, et al. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:48.

    PubMed  PubMed Central  Article  Google Scholar 

  56. Wesierska-Gadek J, et al. Differential Potential of Pharmacological PARP Inhibitors for Inhibiting Cell Proliferation and Inducing Apoptosis in Human Breast Cancer Cells. J Cell Biochem. 2015;116(12):2824–39.

    CAS  PubMed  Article  Google Scholar 

  57. Tewari KS, Eskander RN, Monk BJ. Development of Olaparib for BRCA-Deficient Recurrent Epithelial Ovarian Cancer. Clin Cancer Res. 2015;21(17):3829–35.

    CAS  PubMed  Article  Google Scholar 

  58. Liu FW, Tewari KS. New Targeted Agents in Gynecologic Cancers: Synthetic Lethality, Homologous Recombination Deficiency, and PARP Inhibitors. Curr Treat Options Oncol. 2016;17(3):12.

    PubMed  Article  Google Scholar 

  59. Pflaum J, Schlosser S, Muller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol. 2014;4:285.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Beckta JM, et al. Revisiting p53 for cancer-specific chemo- and radiotherapy: ten years after. Cell Cycle. 2014;13(5):710–3.

    PubMed  PubMed Central  Article  Google Scholar 

  61. Murakami A, et al. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One. 2014;9(1):e86459.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Bao B, et al. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther. 2014;9(1):22–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Carew JS, Nawrocki ST, Cleveland JL. Modulating autophagy for therapeutic benefit. Autophagy. 2007;3(5):464–7.

    CAS  PubMed  Article  Google Scholar 

  64. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2(1):3.

    PubMed  PubMed Central  Article  Google Scholar 

  66. Vencken SF, et al. An integrated analysis of the SOX2 microRNA response program in human pluripotent and nullipotent stem cell lines. BMC Genomics. 2014;15:711.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Kannan N, Nguyen LV, Eaves CJ. Integrin beta3 links therapy resistance and cancer stem cell properties. Nat Cell Biol. 2014;16(5):397–9.

    CAS  PubMed  Article  Google Scholar 

  68. Martinez-Outschoorn UE, et al. The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: A simple solution to the autophagy paradox. Cell Cycle. 2010;9(21):4297–306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Zhang N, et al. HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim Biophys Sin Shanghai. 2016;48(1):39–48.

    CAS  PubMed  Google Scholar 

  70. Huber EM, Heinemeyer W, Groll M. Bortezomib-resistant mutant proteasomes: structural and biochemical evaluation with carfilzomib and ONX 0914. Structure. 2015;23(2):407–17.

    CAS  PubMed  Article  Google Scholar 

  71. Verbrugge SE, et al. Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with rheumatoid arthritis. J Pharmacol Exp Ther. 2012;341(1):174–82.

    CAS  PubMed  Article  Google Scholar 

  72. Awada G, et al. Emerging drugs targeting human epidermal growth factor receptor 2 (HER2) in the treatment of breast cancer. Expert Opin Emerg Drugs. 2016;21(1):91–101.

    CAS  PubMed  Article  Google Scholar 

  73. Niazi M, et al. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin Drug Metab Toxicol. 2016;12:1–13.

    Article  Google Scholar 

  74. Bennouna J, et al. Vinflunine: a new microtubule inhibitor agent. Clin Cancer Res. 2008;14(6):1625–32.

    CAS  PubMed  Article  Google Scholar 

  75. Hill BT. Vinflunine, a second generation novel Vinca Alkaloid with a distinctive pharmacological profile, now in clinical development and prospects for future mitotic blockers. Curr Pharm Des. 2001;7(13):1199–212.

    CAS  PubMed  Article  Google Scholar 

  76. Cree IA, Glaysher S, Harvey AL. Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Curr Opin Pharmacol. 2010;10(4):375–9.

    CAS  PubMed  Article  Google Scholar 

  77. Andreotti PE, et al. TCA-100 tumour chemosensitivity assay: differences in sensitivity between cultured tumour cell lines and clinical studies. J Biolumin Chemilumin. 1994;9(6):373–8.

    CAS  PubMed  Article  Google Scholar 

  78. Cree IA. Designing personalised cancer treatments. J Control Release. 2013;172(2):405–9.

    CAS  PubMed  Article  Google Scholar 

  79. Cella CA, et al. Dual inhibition of mTOR pathway and VEGF signalling in neuroendocrine neoplasms: from bench to bedside. Cancer Treat Rev. 2015;41(9):754–60.

    CAS  PubMed  Article  Google Scholar 

  80. Tops B, et al. Development of a semi-conductor sequencing-based panel for genotyping of colon and lung cancer by the Onconetwork consortium. BMC Cancer. 2015;15(1):26.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 2013;4(1):5.

    PubMed  PubMed Central  Article  Google Scholar 

  82. Petty RD, et al. Expression of the p53 tumour suppressor gene product is a determinant of chemosensitivity. Biochem Biophys Res Commun. 1994;199(1):264–70.

    CAS  PubMed  Article  Google Scholar 

  83. Alkema NG, et al. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions. Drug Resist Updat. 2016;24:55–69.

    PubMed  Article  Google Scholar 

  84. Espinosa E, et al. Treatment algorithms in stage IV melanoma. Am J Ther. 2015;22(1):61–7.

    PubMed  Article  Google Scholar 

  85. Twyman-Saint Victor C, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7.

    CAS  PubMed  Article  Google Scholar 

  86. Cree IA, et al. PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation. Histopathology. 2016;69(2):177–86.

    PubMed  Article  Google Scholar 

  87. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J Immunother Cancer. 2016;4:48.

    PubMed  PubMed Central  Article  Google Scholar 

  89. Hellmann M, et al. Genomic profile, smoking, and response to anti-PD-1 therapy in non-small cell lung carcinoma. Mol Cell Oncol. 2016;3(1):e1048929.

    PubMed  Article  Google Scholar 

  90. Cree IA, et al. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol. 2014;67:923–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Young EC, et al. A comparison of methods for EGFR mutation testing in non-small cell lung cancer. Diagn Mol Pathol. 2013;22(4):190–5.

    CAS  PubMed  Article  Google Scholar 

  92. Cree IA. Progress and potential of RAS mutation detection for diagnostics and companion diagnostics. Expert Rev Mol Diagn. 2016;16:1067–72.

    CAS  PubMed  Article  Google Scholar 

  93. Willyard C. Cancer therapy: an evolved approach. Nature. 2016;532(7598):166–8.

    CAS  PubMed  Article  Google Scholar 

  94. Dietel M, et al. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther. 2015;22(9):417–30.

    CAS  PubMed  Article  Google Scholar 

  95. Milne CP, et al. Complementary versus companion diagnostics: apples and oranges? Biomark Med. 2015;9(1):25–34.

    CAS  PubMed  Article  Google Scholar 

Page 2

We recognise six hallmarks of anti-cancer drug resistance. Cancer cells may alter drug targets by mutation or reduced expression; upregulate the expression of drug pumps; increase the activity of expression of drug detoxification mechanisms; reduce their susceptibility to apoptosis; alter their level of proliferation; and increase their ability to repair DNA damage. All of these may be employed at once, but there is considerable heterogeneity between tumours, requiring an individualised approach to cancer treatment

Última postagem

Tag