Exercícios sistema de equação do 1 grau método da adição

O mecanismo de sistemas de equações possui alguns métodos para facilitar o transcorrer da resolução de um problema e para obter a solução de equações com mais de uma incógnita. Veremos abaixo como realizar o método da adição.

Método da Adição

O método da adição consiste em adicionar as equações com o intuito de diminuir o número de incógnitas, ou seja, somar as equações a fim de encontrar a solução.

Exemplo:

( I )  X – Y = 6 ( II ) X + Y = 10            + -------------------- 2X = 16

X = 8

( I ) X – Y = 6 ( I ) 8 – Y = 6  -Y = -2

Y = 2

Na resolução dessa equação, ao invés de substituirmos uma equação dentro da outra, realizamos a adição das igualdades para alcançarmos o resultado.

Exercícios resolvidos método da adição

1) Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 10 caixas, com 24 frascos em cada caixa. Sabendo-se que cada caixa continha 2 frascos de detergentes a mais no aroma limão do que no aroma coco, o número de frascos entregues, no aroma limão, foi?

Em um primeiro lugar, precisamos identificar as informações relevantes citadas no texto. Sabendo que em cada caixa existem 24 frascos, que dois detergentes de limão vieram a mais do que o de coco e admitindo L como detergente de limão e C detergente de coco obtemos que:

L + C = 24
L – C = 2

Somando as equações obtemos que:

L + C = 24 L – C = 2     + -------------- 2L = 26

L = 13

Ou seja, 13 detergentes de limão por caixa. Entretanto, a questão pede o número total de detergentes entregues. Dessa forma, sabendo que são 10 caixas, 13 * 10

2) Uma empresa deseja contratar técnicos e para isso aplicou uma prova com 50 perguntas a todos os candidatos. Cada candidato ganhou 4 pontos para cada resposta certa e perdeu um ponto para cada resposta errada. Se Marcelo fez 130 pontos quantas perguntas ele acertou?

Considerando os acertos como A e erros como E, montamos o seguinte sistema:

( I )  A + E = 50
( II ) 4A – E = 130

A primeira equação é a equação das perguntas, na qual a soma das acertadas e erradas resulta em 50. Já a segunda é a equação dos pontos feitos por Marcelo, na qual cada acerto somou como quatro pontos e cada erro subtraiu um ponto.

( I )  A + E = 50 ( II ) 4A – E = 130 + ------------------------ 5A = 180

A = 36

Logo, Marcelo acertou 36 questões.

Consideramos um sistema de equações quando vamos resolver problemas que envolvem quantidades numéricas e que, geralmente, recorremos ao uso de equações para representar tais situações. Na maioria dos problemas reais, devemos considerar mais de uma equação simultaneamente, o que depende, dessa forma, da elaboração de sistemas.

Problemas, como a modelagem de tráfego, podem ser solucionados utilizando sistemas lineares, para isso, devemos entender os elementos de um sistema linear, quais métodos utilizar e como determinar sua solução.

Exercícios sistema de equação do 1 grau método da adição
Sistemas de equações são aqueles que trabalham com mais de uma quantidade numérica.

Equações

Nosso estudo será em volta de sistemas de equações lineares, então, vamos entender primeiramente o que é uma equação linear.

Uma equação será dita linear quando puder ser escrita dessa forma:

a1 ·x1 + a2 ·x2 + a3 ·x3 +...+ an ·xn = k

Em que (a1, a2, a3, ..., an) são os coeficientes da equação, (x1, x2, x3, ..., xn) são as incógnitas e devem ser lineares e k é o termo independente.

  • -2x + 1 = -8 ® Equação linear com uma incógnita
  • 5p + 2r =5 ® Equação linear com duas incógnitas
  • 9x – y - z = 0 ® Equação linear com três incógnitas
  • 8ab +c – d = -9 ® Equação não linear

Saiba mais: Diferenças entre função e equação

Como calcular um sistema de equações?

A solução de um sistema linear é todo conjunto ordenado e finito que satisfaz ao mesmo tempo todas as equações do sistema. A quantidade de elementos do conjunto solução sempre é igual ao número de incógnitas do sistema.

Considere o sistema:

O par ordenado (6; -2) satisfaz ambas equações, assim, ele é solução do sistema. O conjunto formado pelas soluções do sistema é chamado de conjunto solução. Do exemplo acima, temos:

S = {( 6; -2)}

A forma de escrever com chaves e parênteses indica um conjunto solução (sempre entre chaves) formado por um par ordenado (sempre entre parênteses).

Observação: Se dois ou mais sistemas possuem o mesmo conjunto solução, esses sistemas são chamados de sistemas equivalentes.

Método da substituição

O método da substituição resume-se em seguir três passos. Para isso, considere o sistema

O primeiro passo consiste em escolher uma das equações (a mais fácil) e isolar uma das incógnitas (a mais fácil). Assim,

x – 2y = -7

x = -7 + 2y

No segundo passo, basta substituir, na equação não escolhida, a incógnita isolada no primeiro passo. Logo,

3x + 2y = -7

3 (-7 + 2y) + 2y = - 5

-21 +6y + 2y =-5

8y = -5 +21

8y = 16

y = 2

O terceiro passo, consiste em substituir o valor encontrado no segundo passo em qualquer uma das equações. Assim,

x = -7 + 2y

x = -7 + 2(2)

x = -7 +4

x = -3

Portanto, a solução do sistema é S {(-3, 2)}.

Método da adição

Para realizar o método da adição, devemos lembrar que os coeficientes de uma das incógnitas devem ser opostos, ou seja, ter números iguais com sinais contrários. Vamos considerar o mesmo sistema do método da substituição.

Veja que os coeficientes da incógnita y atendem nossa condição, assim, basta somar cada uma das colunas do sistema, obtendo a equação:

4x + 0y = -12

4x = -12

x = -3

E substituindo o valor de x em qualquer uma das equações temos:

x - 2y = -7

-3 - 2y = -7

-2y = -7 + 3

(-1) (-2y) = -4 (-1)

2y = 4

y = 2

Portanto, a solução do sistema é S {(-3, 2)}

Leia também: Resolução de problemas por sistemas de equação

Classificação dos sistemas lineares

Podemos classificar um sistema linear quanto ao número de soluções. Um sistema linear pode ser classificado em possível e determinado, possível e indeterminado e impossível.

→ Sistema é possível e determinado (SPD): solução única

→ Sistema possível e indeterminado (SPI): mais de uma solução

→ Sistema impossível: não admite solução

Veja o esquema:

Exercício resolvido

Questão 1 – (Vunesp) Uma lapiseira, três cadernos e uma caneta custam, juntos, 33 reais. Duas lapiseiras, sete cadernos e duas canetas custam, juntos, 76 reais. O custo de uma lapiseira, um caderno e uma caneta, juntos, em reais é:

a) 11

b) 12

c) 13

d) 17

e) 38

Solução

Vamos atribuir a incógnita x ao preço de cada lapiseira, y ao preço de cada caderno e z ao preço de cada caneta. Do enunciado, temos que:

Multiplicando a equação de cima por -2 teremos que:

Somando termo a termo, teremos que:

y = 10

Substituindo o valor de y encontrado na primeira equação, teremos que:

x + 3y + z = 33

x + 30 + z  = 33

x + z = 3

Portanto, o preço de uma lapiseira de um caderno e uma caneta é:

x + y + z = 13 reais.

Alternativa C

Por Robson Luiz
Professor de Matemática

Existem vários métodos que podem ser usados para resolver sistemas de equações. Um dos mais conhecidos é o método da adição. Ele visa a eliminar uma das incógnitas de um sistema pela soma dos termos semelhantes das equações que o compõem. No exemplo a seguir, observe que a simples soma dos termos das equações já zera uma das suas incógnitas:

As somas realizadas nesse exemplo foram: 2x + 4x, 8y + (– 8y) = 0 e 16 + 8 = 24. Observe que, pelo resultado da soma, podemos encontrar o valor numérico de uma das incógnitas do sistema:

6x = 24

x = 24
      6

x = 4

Para descobrir a incógnita y, basta substituir o valor numérico de x em uma das duas equações do sistema:

2x + 8y = 16

2·4 + 8y = 16

8 + 8y = 16

8y = 16 – 8

8y = 8

y = 8
      8

y = 1

A solução desse sistema é S = {4, 1}.

Quando a soma dos termos não zera uma das incógnitas

O sistema do exemplo anterior foi resolvido com facilidade porque foi criado com os coeficientes da incógnita y opostas aditivas. Sempre que isso acontecer para uma das incógnitas, o método da adição é o mais indicado, pois os resultados são encontrados com muito mais agilidade.

Quando as incógnitas não forem opostas aditivas, ou seja, quando não forem o mesmo número com sinais diferentes, é necessário fazer um procedimento antes de somar as duas equações para que uma das incógnitas seja eliminada.

Para compreender esse procedimento, observe o exemplo a seguir:

Observe que não é possível eliminar nenhuma das incógnitas, pois a soma das equações é:

5x + 9y = 28

Para viabilizar a eliminação de uma incógnita, devemos multiplicar uma das equações por uma constante para que pelo menos uma de suas incógnitas torne-se o inverso aditivo de uma das incógnitas da outra equação.

No exemplo, multiplicaremos a segunda equação por – 2. Esse valor foi escolhido para que o termo 3y tenha como resultado – 6y, que é o inverso aditivo de 6y da outra equação. Assim, é possível somar as duas, eliminando a incógnita y nesse processo.

Observe que, ao multiplicar uma das equações por uma constante, todos os seus termos devem ser multiplicados por essa constante. Após a multiplicação, o sistema fica pronto para que a soma entre as equações seja feita. O resultado dessa soma é o seguinte:

– x = – 2

x = 2

Com o valor de uma das incógnitas, basta substituí-lo em uma das equações do sistema para descobrir o valor da outra incógnita:

3x + 6y = 18

3·2 + 6y = 18

6 + 6y = 18

6y = 18 – 6

6y = 12

y = 12
      6

y = 2

A solução do sistema é S = {2, 2}