Compare natural and artificial selection by classifying the following scenarios.

Artificial selection is the intentional reproduction of individuals in a population that have desirable traits. In organisms that reproduce sexually, two adults that possess a desired trait — such as two parent plants that are tall — are bred together. In this example, the mechanisms of heredity dictate that the next generation will consist of more tall plants than previous generations. If artificial selection is continued, all of the population will ultimately be tall. Also called selective breeding, artificial selection is perhaps best understood as a contrast to natural selection, where the random forces of nature determine which individuals survive and reproduce. In both cases, the outcome is the same: a population changes over time, so that certain traits become more common.

What are some examples of artificial selection?

Teosinte (left) and its modern descendent, corn, a product of artificial selection

Artificial selection has generated untold diversity in both plants and animals. In agriculture, superior strains of corn, wheat, and soybeans have resulted from careful breeding. The Brassicas described by Paul Williams in the video are great examples of artificial selection. Cabbage, broccoli, cauliflower, Brussels sprouts, collards, and kale are all members of the same species, Brassica oleracea. Gardeners have cultivated flowers such as roses and orchids, carefully manipulating heredity to produce the “perfect” hybrid.

A variety of vegetables of the Brassica oleracea species

Some consider domesticated animals to be the ultimate products of artificial selection. Thoroughbred racehorses are one example of artificial selection of animals. The meats we eat are the result of the careful selective breeding of cows, pigs, sheep, and chickens. Our pets are a far cry from their “wild” ancestors. Cats and dogs, which were originally domesticated for pest control, hunting, or shepherding, eventually were bred to become companion animals. A glance at a group of dogs — all of the species Canis familiaris — reveals an astounding diversity of body type, size, and coloration.

There can be a down side to artificial selection. Because this process essentially removes variation in a population, selectively bred organisms can be especially susceptible to diseases or changes in the environment that would not be a problem for a natural population. Inbreeding — the mating of closely related individuals — is also a problem. In dogs, this has resulted in breeds that have health issues ranging from decreased life span to hip dysplasia.

  • Allaby RG, Fuller DQ, Brown TA. The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci U S A 2008;105:13982–6. doi:10.1073/pnas.0803780105.

    CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science 2005;309:741–5. doi:10.1126/science.1113373.

    CAS  Google Scholar 

  • Balter M. Seeking agriculture’s ancient roots. Science 2007;316:1830–5. doi:10.1126/science.316.5833.1830.

    CAS  Google Scholar 

  • Bartley MM. Darwin and domestication: studies on inheritance. J Hist Biol 1992;25:307–33. doi:10.1007/BF00162844.

    Google Scholar 

  • Bellwood P. First farmers. Malden: Blackwell; 2005.

    Google Scholar 

  • Bennetzen J, Buckler E, Chandler V, Doebley J, Dorweiler J, Gaut B, et al. Genetic evidence and the origin of maize. Lat Am Antiquity 2001;12:84–6. doi:10.2307/971759.

    Google Scholar 

  • Benz BF. Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca. Proc Natl Acad Sci U S A 2001;98:2104–6. doi:10.1073/pnas.98.4.2104.

    CAS  Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE. The gene for fragrance in rice. Plant Biotechnol J 2005;3:363–70. doi:10.1111/j.1467-7652.2005.00131.x.

    CAS  Google Scholar 

  • Bromham L, Penny D. The modern molecular clock. Nat Rev Genet 2003;4:216–24. doi:10.1038/nrg1020.

    CAS  Google Scholar 

  • Brown TA. How ancient DNA may help in understanding the origin and spread of agriculture. Proc R Soc Lond B Biol Sci 1999;354:89–98. doi:10.1098/rstb.1999.0362.

    CAS  Google Scholar 

  • Bruford MW, Bradley DG, Luikart G. DNA markers reveal the complexity of livestock domestication. Nat Rev Genet 2003;4:900–10. doi:10.1038/nrg1203.

    CAS  Google Scholar 

  • Buckler ES, Stevens NM. Maize origins, domestication, and selection. In: Motley TJ, Zerega N, Cross H, editors. Darwin’s harvest. New York: Columbia University Press; 2006. p. 67–90.

    Google Scholar 

  • Burger JC, Chapman MA, Burke JM. Molecular insights into the evolution of crop plants. Am J Bot 2008;95:113–22. doi:10.3732/ajb.95.2.113.

    Google Scholar 

  • Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E. Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet Syst 2002;77:323–34. doi:10.1266/ggs.77.323.

    CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 2005;142:169–96. doi:10.1007/s10681-005-1681-5.

    CAS  Google Scholar 

  • Cornell JF. Analogy and technology in Darwin’s vision of nature. J Hist Biol 1984;17:303–44. doi:10.1007/BF00126367.

    CAS  Google Scholar 

  • Cruz F, Vilà C, Webster MT. The legacy of domestication: accumulation of deleterious mutations in the dog genome. Mol Biol Evol 2008;25:2331–6. doi:10.1093/molbev/msn177.

    CAS  Google Scholar 

  • Darlington CD. The evolution of man and society. London: Allen and Unwin; 1969.

    Google Scholar 

  • Darwin C. An account of the fine dust which often falls on vessels in the Atlantic ocean. Q J Geol Soc Lond 1846;2:26–30.

    Google Scholar 

  • Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859.

    Google Scholar 

  • Darwin C. The variation of animals and plants under domestication. London: John Murray; 1868.

    Google Scholar 

  • Darwin C. The autobiography of Charles Darwin 1809–1882. London: Collins; 1958.

  • Diamond J. Guns, germs, and steel. New York: Norton; 1997.

    Google Scholar 

  • Diamond J. Evolution, consequences and future of plant and animal domestication. Nature 2002;418:700–7. doi:10.1038/nature01019.

    CAS  Google Scholar 

  • Dobney K, Larson G. Genetics and animal domestication: new windows on an elusive process. J Zool 2006;269:261–71.

    Google Scholar 

  • Doebley J. Mapping the genes that made maize. Trends Genet 1992;8:302–7.

    CAS  Google Scholar 

  • Doebley J. The genetics of maize evolution. Annu Rev Genet 2004;38:37–59. doi:10.1146/annurev.genet.38.072902.092425.

    CAS  Google Scholar 

  • Doebley J. Unfallen grains: how ancient farmers turned weeds into crops. Science 2006;312:1318–9. doi:10.1126/science.1128836.

    Google Scholar 

  • Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell 2006;127:1309–21. doi:10.1016/j.cell.2006.12.006.

    CAS  Google Scholar 

  • Drake AG, Klingenberg CP. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proc R Soc Lond B Biol Sci 2008;275:71–6. doi:10.1098/rspb.2007.1169.

    Google Scholar 

  • Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, Geffen E, et al. The near eastern origin of cat domestication. Science 2007;317:519–23. doi:10.1126/science.1139518.

    CAS  Google Scholar 

  • Emshwiller E. Genetic data and plant domestication. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD, editors. Documenting domestication. Berkeley: University of California Press; 2006. p. 99–122.

    Google Scholar 

  • Eubanks MW. Interdisciplinary perspective on the origin of maize. Lat Am Antiquity 2001;12:91–8. doi:10.2307/971761.

    Google Scholar 

  • Evans LT. Darwin’s use of the analogy between artificial and natural selection. J Hist Biol 1984;17:113–40. doi:10.1007/BF00397504.

    CAS  Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A 1998;95:4441–6. doi:10.1073/pnas.95.8.4441.

    CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 2006;112:1164–71. doi:10.1007/s00122-006-0218-1.

    CAS  Google Scholar 

  • Fitzgerald MA, Sackville Hamilton NR, Calingacion MN, Verhoeven HA, Butardo VM. Is there a second fragrance gene in rice? Plant Biotechnol J 2008;6:416–23. doi:10.1111/j.1467-7652.2008.00327.x.

    CAS  Google Scholar 

  • Fuller DQ. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot (Lond) 2007;100:903–24. doi:10.1093/aob/mcm048.

    Google Scholar 

  • Futuyma DJ. Evolution. Sunderland: Sinauer; 2005.

    Google Scholar 

  • Gepts P. Crop domestication as a long-term selection experiment. Plant Breed Rev 2004;24(2):1–44.

    Google Scholar 

  • Gildenhuys P. Darwin, Herschel, and the role of analogy in Darwin’s origin. Stud Hist Philos Biol Biomed Sci 2004;35:593–611. doi:10.1016/j.shpsc.2004.09.002.

    Google Scholar 

  • Grant PR, Grant BR. How and why species multiply. Princeton: Princeton University Press; 2008.

    Google Scholar 

  • Gregory TR. Synergy between sequence and size in large-scale genomics. Nat Rev Genet 2005;6:699–708. doi:10.1038/nrg1674.

    CAS  Google Scholar 

  • Gregory TR. Evolution as fact, theory, and path. Evo Edu Outreach 2008a;1:46–52. doi:10.1007/s12052-007-0001-z.

    Google Scholar 

  • Gregory TR. Understanding evolutionary trees. Evo Edu Outreach 2008b;1:121–37. doi:10.1007/s12052-008-0035-x.

    Google Scholar 

  • Gregory TR. The evolution of complex organs. Evo. Edu Outreach 2008c;1:358–89. doi:10.1007/s12052-008-0076-1.

    Google Scholar 

  • Harlan JR, de Wet JMJ, Price EG. Comparative evolution of cereals. Evolution Int J Org Evolution 1973;27:311–25. doi:10.2307/2406971.

    Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 2007;24:1506–17. doi:10.1093/molbev/msm077.

    CAS  Google Scholar 

  • Hawks J, Wang ET, Cochran GM, Harpending HC, Moyzis RK. Recent acceleration of human adaptive evolution. Proc Natl Acad Sci U S A 2007;104:20753–8. doi:10.1073/pnas.0707650104.

    CAS  Google Scholar 

  • Heiser CB. Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 1988;37:77–81. doi:10.1007/BF00037227.

    Google Scholar 

  • Herbert S. Darwin, Malthus, and selection. J Hist Biol 1971;4:209–17. doi:10.1007/BF00356983.

    CAS  Google Scholar 

  • Herke SW, Xing J, Ray DA, Zimmerman JW, Cordaux R, Batzer MA. A SINE-based dichotomous key for primate identification. Gene 2007;390:39–51. doi:10.1016/j.gene.2006.08.015.

    CAS  Google Scholar 

  • Ho SYW, Larson G. Molecular clocks: when times are a-changin’. Trends Genet 2006;22:79–83. doi:10.1016/j.tig.2005.11.006.

    CAS  Google Scholar 

  • Hull DL. Darwin and his critics. Cambridge: Harvard University Press; 1973.

    Google Scholar 

  • Jaenicke-Després V, Buckler ES, Smith BD, Gilbert MTP, Cooper A, Doebley J, et al. Early allelic selection in maize as revealed by ancient DNA. Science 2003;302:1206–8. doi:10.1126/science.1089056.

    Google Scholar 

  • Jahren AH, Kraft RA. Carbon and nitrogen stable isotopes in fast food: signature of corn and confinement. Proc Natl Acad Sci U S A 2008;105:17855–60. doi:10.1073/pnas.0809870105.

    CAS  Google Scholar 

  • Jensen P. Domestication—from behaviour to genes and back again. Appl Anim Behav Sci 2006;97:3–15. doi:10.1016/j.applanim.2005.11.015.

    Google Scholar 

  • Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, et al. Genetic control of rice plant architecture under domestication. Nat Genet 2008;40:1365–9. doi:10.1038/ng.247.

    CAS  Google Scholar 

  • Jones M, Brown TA. Agricultural origins: the evidence of modern and ancient DNA. Holocene 2000;10:769–76. doi:10.1191/09596830095024.

    Google Scholar 

  • Jørgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, et al. Managing evolving fish stocks. Science 2007;318:1247–8. doi:10.1126/science.1148089.

    Google Scholar 

  • Kawakami S-i, Ebana K, Nishikawa T, Sato Y-i, Vaughan DA, Kadowaki K-i. Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.). Genome 2007;50:180–7. doi:10.1139/G06-139.

    CAS  Google Scholar 

  • Kohn D. Theories to work by: rejected theories, reproduction, and Darwin’s path to natural selection. Stud Hist Biol 1980;4:67–170.

    CAS  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, et al. An SNP caused loss of seed shattering during rice domestication. Science 2006;312:1392–6.

    CAS  Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR. New insights into the history of rice domestication. Trends Genet 2007;23:579–87.

    Google Scholar 

  • Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet 1999;33:479–532. doi:10.1146/annurev.genet.33.1.479.

    CAS  Google Scholar 

  • Kumar A, Hirochika H. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 2001;6:127–34. doi:10.1016/S1360-1385(00)01860-4.

    CAS  Google Scholar 

  • Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc Natl Acad Sci U S A 2007;104:15276–81. doi:10.1073/pnas.0703411104.

    Google Scholar 

  • Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillén S, Vilà C. Ancient DNA evidence for Old World origin of New World dogs. Science 2002;298:1613–6. doi:10.1126/science.1076980.

    CAS  Google Scholar 

  • Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science 2006;311:1936–9. doi:10.1126/science.1123604.

    CAS  Google Scholar 

  • Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y, et al. Origin of seed shattering in rice (Oryza sativa L.). Planta 2007;226:11–20. doi:10.1007/s00425-006-0460-4.

    CAS  Google Scholar 

  • Liolios K, Mavrommatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008;36:D475–9. doi:10.1093/nar/gkm884.

    CAS  Google Scholar 

  • Lu J, Tang T, Tang H, Huang J, Shi S, Wu CI. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 2006;22:126–31. doi:10.1016/j.tig.2006.01.004.

    CAS  Google Scholar 

  • Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 2006;12:57–63. doi:10.1016/j.tplants.2006.12.001.

    Google Scholar 

  • Mansour A. Utilization of genomic retrotransposons as cladistic markers. J Cell Mol Biol 2008;7:17–28.

    CAS  Google Scholar 

  • Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 2002;19:2084–91.

    CAS  Google Scholar 

  • Meudt HM, Clarke AC. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 2007;12:106–17. doi:10.1016/j.tplants.2007.02.001.

    CAS  Google Scholar 

  • Mignon-Grasteau S, Boissy A, Bouix J, Faure JM, Fisher AD, Hinch GN, et al. Genetics of adaptation and domestication in livestock. Livest Prod Sci 2005;93:3–14. doi:10.1016/j.livprodsci.2004.11.001.

    Google Scholar 

  • Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Lesk AM, et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 2008;456:387–90. doi:10.1038/nature07446.

    CAS  Google Scholar 

  • Motley TJ. Crop plants: past, present, and future. In: Motley TJ, Zerega N, Cross H, editors. Darwin’s harvest. New York: Columbia University Press; 2006. p. 1–27.

    Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 2005;3:e170. doi:10.1371/journal.pbio.0030170.

    Google Scholar 

  • Nikaido M, Rooney AP, Okada N. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci U S A 1999;96:10261–6. doi:10.1073/pnas.96.18.10261.

    CAS  Google Scholar 

  • Nikaido M, Hamilton H, Makino H, Sasaki T, Takahashi K, Goto M, et al. Baleen whale phylogeny and a past extensive radiation event revealed by SINE insertion analysis. Mol Biol Evol 2006;23:866–73. doi:10.1093/molbev/msj071.

    CAS  Google Scholar 

  • Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al. Sequencing and analysis of Neanderthal genomic DNA. Science 2006;314:1113–8. doi:10.1126/science.1131412.

    CAS  Google Scholar 

  • Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD. Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 2006;173:975–83. doi:10.1534/genetics.106.056473.

    CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 2003;15:1795–806. doi:10.1105/tpc.012526.

    CAS  Google Scholar 

  • Palmer JD. Chloroplast DNA and molecular phylogeny. Bioessays 1985;2:263–7. doi:10.1002/bies.950020607.

    CAS  Google Scholar 

  • Palumbi SR. Humans as the world’s greatest evolutionary force. Science 2001a;293:1786–90. doi:10.1126/science.293.5536.1786.

    CAS  Google Scholar 

  • Palumbi SR. The evolution explosion. New York: Norton; 2001b.

    Google Scholar 

  • Panaud O. The molecular bases of cereal domestication and the history of rice. Comptes Rendus Biologies 2008; in press.

  • Piperno DR, Flannery KV. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci U S A 2001;98:2101–3. doi:10.1073/pnas.98.4.2101.

    CAS  Google Scholar 

  • Piperno DR, Weiss E, Holst I, Nadel D. Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 2004;430:670–3. doi:10.1038/nature02734.

    CAS  Google Scholar 

  • Pozzi C, Rossini L, Vecchietti A, Salamini F. Gene and genome changes during domestication of cereals. In: Gupta PK, Varshney RK, editors. Cereal genomics. Dordrecht: Kluwer Academic; 2004. p. 165–98.

    Google Scholar 

  • Purugganan MD, Boyles AL, Suddith JI. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 2000;115:855–62.

    Google Scholar 

  • Rheinberger HJ, McLaughlin P. Darwin’s experimental natural history. J Hist Biol 1984;17:345–68. doi:10.1007/BF00126368.

    CAS  Google Scholar 

  • Richards RA. Darwin and the inefficacy of artificial selection. Stud Hist Philos Sci 1997;28:75–97. doi:10.1016/S0039-3681(96)00008-8.

    Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 2007;104:8641–8. doi:10.1073/pnas.0700643104.

    CAS  Google Scholar 

  • Ruse M. The value of analogical models in science. Dialogue 1973;12:246–53.

    Google Scholar 

  • Ruse M. Charles Darwin and artificial selection. J Hist Ideas 1975;36:339–50. doi:10.2307/2708932.

    CAS  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007;449:913–8. doi:10.1038/nature06250.

    CAS  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W. Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 2002;3:429–41.

    CAS  Google Scholar 

  • Salem AH, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, et al. Alu elements and hominid phylogenetics. Proc Natl Acad Sci U S A 2003;100:12787–91. doi:10.1073/pnas.2133766100.

    Google Scholar 

  • Savolainen P, Zhang Yp, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science 2002;298:1610–3. doi:10.1126/science.1073906.

    CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN. The application of LTR retrotransposons as molecular markers in plants. In: Miller WJ, Capy P, editors. Mobile genetic elements. Totowa: Humana; 2004a. p. 145–73.

    Google Scholar 

  • Schulman AH, Gupta PK, Varshney RK. Organization of retrotransposons and microsatellites in cereal genomes. In: Gupta PK, Varshney RK, editors. Cereal genomics. Dordrecht: Kluwer Academic; 2004b.

    Google Scholar 

  • Schweber SS. The origin of the Origin revisited. J Hist Biol 1977;10:229–316. doi:10.1007/BF00572644.

    CAS  Google Scholar 

  • Secord JA. Nature’s fancy: Charles Darwin and the breeding of pigeons. Isis 1981;72:163–86. doi:10.1086/352717.

    Google Scholar 

  • Shedlock AM, Okada N. SINE insertions: powerful tools for molecular systematics. Bioessays 2000;22:148–60. doi:10.1002/(SICI)1521-1878(200002)22:2%3C148::AID-BIES6%3E3.0.CO;2-Z.

    CAS  Google Scholar 

  • Shedlock AM, Takahashi K, Okada N. SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol 2004;19:545–53. doi:10.1016/j.tree.2004.08.002.

    Google Scholar 

  • Smith BD. Documenting domesticated plants in the archaeological record. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD, editors. Documenting domestication. Berkeley: University of California Press; 2006. p. 15–24.

    Google Scholar 

  • Sterrett SG. Darwin’s analogy between artificial and natural selection: how does it go? Stud Hist Philos Biol Biomed Sci 2002;33:151–68. doi:10.1016/S1369-8486(01)00039-5.

    Google Scholar 

  • Sweeney M, McCouch S. The complex history of the domestication of rice. Ann Bot (Lond) 2007;100:951–7. doi:10.1093/aob/mcm128.

    Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S. Caught red-handed: Rc encodes a basic helix–loop–helix protein conditioning red pericarp in rice. Plant Cell 2006;18:283–94. doi:10.1105/tpc.105.038430.

    CAS  Google Scholar 

  • Tanno Ki, Willcox G. How fast was wild wheat domesticated? Science 2006;311:1886. doi:10.1126/science.1124635.

    CAS  Google Scholar 

  • Thompson RG. Documenting the presence of maize in Central and South America through phytolith analysis of food residues. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD, editors. Documenting domestication. Berkeley: University of California Press; 2006. p. 82–95.

    Google Scholar 

  • Trut LN. Early canid domestication: the farm-fox experiment. Am Sci 1999;87:160–9.

    Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N. The evolving story of rice evolution. Plant Sci 2008;174:394–408.

    CAS  Google Scholar 

  • Vilà C, Savolainen P, Moldonado JE, Amorim IR, Rice JE, Honeycutt RL, et al. Multiple and ancient origins of the domestic dog. Science 1997;276:1687–9. doi:10.1126/science.276.5319.1687.

    Google Scholar 

  • Voight BF, Kudravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol 2006;4:e72. doi:10.1371/journal.pbio.0040072.

    Google Scholar 

  • Vollbrecht E, Sigmon B. Amazing grass: developmental genetics of maize domestication. Biochem Soc Trans 2005;33:1502–6. doi:10.1042/BST20051502.

    CAS  Google Scholar 

  • Vorzimmer P. Darwin’s Questions About The Breeding of Animals (1839). J Hist Biol 1969a;2:269–81. doi:10.1007/BF00137278.

    Google Scholar 

  • Vorzimmer P. Darwin, Malthus, and the theory of natural selection. J Hist Ideas 1969b;30:527–42. doi:10.2307/2708609.

    Google Scholar 

  • Wallace AR. On the tendency of varieties to depart indefinitely from the original type. Proc Linn Soc Lond 1858;3:53–62.

    Google Scholar 

  • Wallace AR. Darwinism. London: Macmillan; 1889.

    Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, et al. The origin of the naked grains of maize. Nature 2005;436:714–9. doi:10.1038/nature03863.

    CAS  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 2008;40:1370–4. doi:10.1038/ng.220.

    CAS  Google Scholar 

  • Waters CK. Taking analogical inference seriously: Darwin’s argument from artificial selection. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986;1986:502–13.

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES. Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci U S A 2002;99:12959–62. doi:10.1073/pnas.202476999.

    CAS  Google Scholar 

  • Wilkes G. Corn, strange and marvelous: but is a definitive origin known? In: Smith CW, Betrán J, Runge ECA, editors. Corn: origin, history, technology, and production. Hoboken: Wiley; 2004. p. 3–63.

    Google Scholar 

  • Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. Localizing recent adaptive evolution in the human genome. PLoS Genet 2007;3:e90. doi:10.1371/journal.pgen.0030090.

    Google Scholar 

  • Wills DM, Burke JM. Chloroplast DNA variation confirms a single origin of domesticated sunflower (Helianthus annuus L.). J Hered 2006;97:403–8. doi:10.1093/jhered/esl001.

    CAS  Google Scholar 

  • Wright SI, Gaut B. Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol 2005;22:506–19. doi:10.1093/molbev/msi035.

    CAS  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, et al. The effects of artificial selection on the maize genome. Science 2005;308:1310–4. doi:10.1126/science.1107891.

    CAS  Google Scholar 

  • Xing J, Wang H, Han K, Ray DA, Huang CH, Chemnick LG, et al. A mobile element based phylogeny of Old World monkeys. Mol Phylogenet Evol 2005;37:872–80. doi:10.1016/j.ympev.2005.04.015.

    CAS  Google Scholar 

  • Xu JH, Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E. Phylogenetic analysis of Oryza rufipogon strains and their relations to Oryza sativa strains by insertion polymorphism of rice SINEs. Genes Genet Syst 2007;82:217–29. doi:10.1266/ggs.82.217.

    CAS  Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD, Bradley DG. Documenting domestication: the intersection of genetics and archaeology. Trends Genet 2006a;22:139–55.

    CAS  Google Scholar 

  • Zeder MA, Bradley DG, Emshwiller E, Smith BD. Documenting domestication: bringing together plants, animals, archaeology, and genetics. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD, editors. Documenting domestication. Berkeley: University of California Press; 2006b. p. 1–12.

    Google Scholar 

  • Zhang P, Friebe B, Gill BS. Variation in the distribution of a genome-specific DNA sequence on chromosomes reveals evolutionary relationships in the Triticum and Aegilops complex. Plant Syst Evol 2002;235:169–79.

    CAS  Google Scholar 

  • Zohary D. Unconscious selection and the evolution of domesticated plants. Econ Bot 2004;58:5–10. doi:10.1663/0013-0001(2004)058[0005:USATEO]2.0.CO;2.

    Google Scholar 

  • Zohary D, Tchernov E, Kolska Horwitz L. The role of unconscious selection in the domestication of sheep and goats. J Zool 1998;245:129–35. doi:10.1111/j.1469-7998.1998.tb00082.x.

    Google Scholar 

Page 2

Drawings of four of the six pigeon breeds presented by Darwin (1868), as drawn by Luke Wells. a English pouter, b short-faced English tumbler, c English carrier, d English fantail. As extraordinary as the differences among them appear in these drawings, Darwin (1868) noted that “the characters of the six breeds which have been figured are not in the least exaggerated.” Darwin himself became an active breeder of pigeons and attempted not only to demonstrate that all of the fancy breeds produced by artificial selection descended from a single wild species (the rock pigeon, Columba livia) but to reconstruct their historical relationships (Fig. 4)

Última postagem

Tag