Zone of inhibition bactericidal or bacteriostatic

Bactericidal activity of the hybrid materials at direct contact between bacteria and the hybrid’s surface was demonstrated against E. coli, which suggests such PHA-based nanocomposite hybrid materials to protect food against microbial spoilage.

From: Microbial and Natural Macromolecules, 2021

  1. Larson HE, Price AB, Honour P, Borriello SP: Clostridium Difficile and the aetiology of Pseudomembranous Colitis. Lancet. 1978, 311 (8073): 1063-1066. 10.1016/S0140-6736(78)90912-1.

    Article  Google Scholar 

  2. Sunenshine RH, McDonald LC: Clostridium difficile-associated disease: new challenges from an established pathogen. Cleve Clin J Med. 2006, 73 (2): 187-197. 10.3949/ccjm.73.2.187.

    PubMed  Article  Google Scholar 

  3. Kelly CP, LaMont JT: Clostridium difficile–more difficult than ever. N Engl J Med. 2008, 359 (18): 1932-1940. 10.1056/NEJMra0707500.

    PubMed  CAS  Article  Google Scholar 

  4. Barbut F, Petit JC: Epidemiology of Clostridium difficile-associated infections. Clin Microbiol Infect. 2001, 7: 405-410. 10.1046/j.1198-743x.2001.00289.x.

    PubMed  CAS  Article  Google Scholar 

  5. Gorbach SL: Antibiotics and Clostridium difficile. N Engl J Med. 1999, 341: 1690-1691. 10.1056/NEJM199911253412211.

    PubMed  CAS  Article  Google Scholar 

  6. Gerding DN, Johnson S, Peterson LR, Mulligan ME, Silva J: Clostridium difficile-associated diarrhea and colitis. Infect Control Hosp Epidemiol. 1995, 16: 459-477. 10.1086/648363.

    PubMed  CAS  Article  Google Scholar 

  7. Borriello SP, Barclay FE, Reed PJ, Welch AR, Brown JD, Burdon DW: Analysis of latex agglutination test for Clostridium difficile toxin A (D-1) and differentiation between C. difficile toxins A and B and latex reactive protein. J Clin Pathol. 1987, 40: 573-580. 10.1136/jcp.40.5.573.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  8. Huang H, Weintraub A, Fang H, Nord CE: Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents. 2009, 34 (6): 516-522. 10.1016/j.ijantimicag.2009.09.012.

    PubMed  CAS  Article  Google Scholar 

  9. Alanis AJ: Resistance to antibiotics: are we in the post-antibiotic era?. Arch Med Res. 2005, 36: 697-705. 10.1016/j.arcmed.2005.06.009.

    PubMed  Article  Google Scholar 

  10. Van de Bogaard AE, Stobberingh EE: Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000, 14: 327-335. 10.1016/S0924-8579(00)00145-X.

    Article  Google Scholar 

  11. Bogdanov S, Haldimann M, Luginbühl W, Gallmann P: Minerals in honey: environmental, geographical and botanical aspects. J Apic Res. 2007, 46 (4): 269-275.

    CAS  Google Scholar 

  12. Majno G: The Healing Hand. Man and Wound in the Ancient World. 1975, Cambridge, MA: Harvard University Press, 571-

    Google Scholar 

  13. Topham J: Why do some cavity wounds treated with honey or sugar paste heal with scarring?. J Wound Care. 2002, 11: 53-55.

    PubMed  CAS  Article  Google Scholar 

  14. Cooper R: Using honey to inhibit wound pathogens. Nurs Times. 2008, 104 (3): 46-48–9

    PubMed  Google Scholar 

  15. Cooper RA, Jenkins L: The inhibition of biofilms of Pseudomonas aeruginosa with Manuka honey. Ostomy Wound Management. 2009, 54 (4): 70-

    Google Scholar 

  16. Kwakman PH, Te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CM, Zaat SA: How honey kills bacteria. FASEB J. 2010, 24: 2576-2582. 10.1096/fj.09-150789.

    PubMed  CAS  Article  Google Scholar 

  17. Molan PC, Russell KM: Non-peroxide antibacterial activity in some New Zealand honeys. J Apic Res. 1988, 27 (1): 62-67.

    Google Scholar 

  18. Atrott J, Haberlau S, Henle T: Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydr Res. 2012, 361: 7-11.

    PubMed  CAS  Article  Google Scholar 

  19. Mavric E, Wittmann S, Barth G, Henle T: Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res. 2008, 52 (4): 483-489. 10.1002/mnfr.200700282.

    PubMed  CAS  Article  Google Scholar 

  20. Mukherjee S, Chaki S, Das S, Sen S, Dutta SK, Dastidar SG: Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa. Indian J Exp Biol. 2011, 49: 547-551.

    PubMed  CAS  Google Scholar 

  21. Taormina PJ, Niemira BA, Beuchat LR: Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol. 2001, 69: 217-225. 10.1016/S0168-1605(01)00505-0.

    PubMed  CAS  Article  Google Scholar 

  22. Willix DJ, Molan PC, Harfoot CG: A comparison of the sensitivity of wound-infecting species of bacteria to the antibacterial activity of Manuka honey and other honey. J Appl Bacteriol. 1992, 73: 388-394. 10.1111/j.1365-2672.1992.tb04993.x.

    PubMed  CAS  Article  Google Scholar 

  23. Sherlock O, Dolan A, Athman R, Power A, Gethin G, Cowman S, Humphreys H: Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus. Escherichia coli and Pseudomonas aeruginosa. BMC Complement Altern Med. 2010, 10: 47-10.1186/1472-6882-10-47.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Thomas M, Hamdan M, Hailes S, Walker M: Manuka honey as an effective treatment for chronic pilonidal sinus wounds. J Wound Care. 2011, 20 (11): 530-533.

    Google Scholar 

  25. Lin SM, Molan PC, Cursons RT: The post-antibiotic effect of manuka honey on gastrointestinal pathogens. Int J Antimicrob Agents. 2010, 36 (5): 467-468. 10.1016/j.ijantimicag.2010.06.046.

    PubMed  CAS  Article  Google Scholar 

  26. Baron JE, Peterson LR, Finegold SM: Bailey and Scott Diagnostic Microbiology. 1994, Maryland Heights: C. V. Mosby Co, 175-177. 98–122, 9

    Google Scholar 

  27. European Committee on Antimicrobial Susceptibility Testing: Determination of minimum inhibitory concentration of antibacterial agents by broth dilution: Discussion Document, E. Dis 5.1. 2003, Växjö: EUCAST

    Google Scholar 

  28. European Committee on Antimicrobial Susceptibility Testing: Disk Diffusion Method for Antimicrobial Susceptibility Testing - Version 1.0. 2012, Växjö: EUCAST

    Google Scholar 

  29. Andrews JM: Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001, 48 (Suppl. 1): 5-16.

    PubMed  CAS  Article  Google Scholar 

  30. Cooper RA, Molan PC, Harding KG: Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds. JRSM. 1999, 92: 283-285.

    CAS  Google Scholar 

  31. Cooper RA, Molan PC: The use of honey as an antiseptic in managing Pseudomonas infection. J Wound Care. 1999, 8 (4): 161-164.

    PubMed  CAS  Article  Google Scholar 

  32. Cooper RA, Halas E, Molan PC: The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil. 2002, 23 (6): 366-370. 10.1097/00004630-200211000-00002.

    PubMed  CAS  Article  Google Scholar 

  33. Wilkinson JM, Cavanagh MA: Antibacterial activity of 13 honeys against Escherichia coli and Pseudomonas aeruginosa. J Med Food. 2005, 8 (1): 100-103. 10.1089/jmf.2005.8.100.

    PubMed  CAS  Article  Google Scholar 

  34. O'Neill A, Chopra I: Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques. Expert Opin Investig Drugs. 2004, 13: 1045-1063. 10.1517/13543784.13.8.1045.

    PubMed  Article  Google Scholar 

Page 2

  • Policies
  • Accessibility
  • Press center
  • Support and Contact
  • Leave feedback
  • Careers

Follow BMC

  • BMC Twitter page
  • BMC Facebook page
  • BMC Weibo page

Última postagem

Tag