Why is the recombination frequency you calculated likely an underestimate?

Genetics 3301

Chapter 4: Chromosome Mapping

Detecting Linkage:

Ä Inheritance of linked genes (4-2); Linkage terminology; Crossing-over during meiosis (4-3); Crossing-over during the 4-chromatid stage (4-4); Multiple crossovers (4-5).

Ä Meiotic recombination generates allelic combinations that differ from those that made either parent (4-6); the product of meiotic recombination is called a recombinant; a test cross can determine whether genes are independently assorting (which would be a 50% recombination frequency or 1:1:1:1 ratio) (4-8) or linked (which would give >50% parental phenotypes and <50% non-parental phenotypes) (4-9, 4-10); recombination frequencies can never be more than 50% since that is equal to random assortment.

Ä Recombination on the X chromosome occurs in the homogametic sex and can be detected in the heterogametic sex; X recombination occurs in female Drosophila and is detected in her sons.

Linkage Mapping:

Ä The magnitude of recombination between two linked genes is a measure of their distance apart ≠ the closer two genes are, the smaller the recombination frequency; A linkage map of genes along the chromosome can be generated by determining their recombination frequencies; a recombination frequency (RF) of 1% equals 1 genetic map unit (m.u.); to obtain a map of linked genes A, B and C you must determine the recombination frequency of A-B, B-C and A-C (4-11).

Ä A three point test cross can detect linkage and produce a map of the genes along the chromosome in one cross; double recombinant classes are the smallest and show which genes are furthest apart (4-12); double recombinants do not appear as recombinants for the genes furthest apart, which leads to an underestimate of distance between these genes compared to adding the single recombinant classes (4-12); deducing gene order by inspection (4-13).

Ä One cross over will interfere with or inhibit another crossover nearby; expected recombinants is the product of the RFs in the adjacent regions; coefficient of coincidence calculates amount of interference.

Ä Five steps for recombinant analysis in 3-point test crosses:

1)          calculate recombination frequency for each pair of genes

2)          make a linkage map

3)          determine the double crossover classes

4)          calculate the expected frequency of double crossovers assuming no interference

5)          calculate the intereference

Ä Mapping with molecular markers; RFLPs and VNTRs.

Analyzing single meioses:

Ä In some haploid organisms you can look at the products of single meioses because the meiosis products (spores) are arranged in tetrads and octads within the ascus (3-37a); Neurospora is a beneficial model system because segregate in a linear order (3-37b); one can follow chromosome segregation after the first division (M1) or second division (M2) (3-37); M2 segregation can lead to four ascus patterns because of random chromosome segregation (4-15, 4-16).

Ä RF between the centromere and a gene locus equals the number of M2 ascus patterns ˜ 2 since only half the chromatids from a meiosis are recombinant (4-15).

Statistical analysis of linkage:

Ä Determining whether two genes are linked via chi-square analysis; Null hypothesis; Assessing linkage in humans using Lod scores (4-17).

Accounting for unseen multiple crossovers:

Ä The average RF is 50% for meioses in which crossing over occurs (4-18); Mapping genes in relation to each other; classifying tetrads ≠ PD, NPD and T; RF=1/2(T)+NPD.

Key terms: Know all of these except mapping function and Poisson distribution.

Problems: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 15, 19, 22, 28, 29, 35, 37, 42.

1. Otto SP. 2009. The evolutionary enigma of sex. Am. Nat. 174, S1–S14. ( 10.1086/599084) [PubMed] [CrossRef] [Google Scholar]

2. Charlesworth B, Barton NH. 1996. Recombination load associated with selection for increased recombination. Genet. Res. 67, 27–41. ( 10.1017/S0016672300033450) [PubMed] [CrossRef] [Google Scholar]

3. Barton NH. 1995. A general model for the evolution of recombination. Genet. Res. 65, 123–144. ( 10.1017/S0016672300033140) [PubMed] [CrossRef] [Google Scholar]

4. Rice WR. 2002. Experimental tests of the adaptive significance of sexual recombination. Nat. Rev. Genet. 3, 241–251. ( 10.1038/nrg760) [PubMed] [CrossRef] [Google Scholar]

5. Charlesworth B. 1976. Recombination modification in a fluctuating environment. Genetics 83, 181–195. [PMC free article] [PubMed] [Google Scholar]

6. Otto SP, Lenormand T. 2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261. ( 10.1038/nrg761) [PubMed] [CrossRef] [Google Scholar]

7. Felsenstein J. 1981. Skepticism towards santa rosalia, or why are there so few kinds of animals? Evolution 35, 124–138. ( 10.1111/j.1558-5646.1981.tb04864.x) [PubMed] [CrossRef] [Google Scholar]

8. Ortiz-Barrientos D, Engelstädter J, Rieseberg LH. 2016. Recombination rate evolution and the origin of species. Trends Ecol. Evol. 31, 226–236. ( 10.1016/j.tree.2015.12.016) [PubMed] [CrossRef] [Google Scholar]

9. Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G, Przeworski M. 2009. Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet. 5, e1000658 ( 10.1371/journal.pgen.1000658) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Hassold T, Hunt P. 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291. ( 10.1038/35066065) [PubMed] [CrossRef] [Google Scholar]

11. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. 2005. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324. ( 10.1126/science.1117196) [PubMed] [CrossRef] [Google Scholar]

12. Hinch AG, et al. 2011. The landscape of recombination in African Americans. Nature 476, 170–175. ( 10.1038/nature10336) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Coop G, Przeworski M. 2007. An evolutionary view of human recombination. Nat. Rev. Genet. 8, 23–34. ( 10.1038/nrg1947) [PubMed] [CrossRef] [Google Scholar]

14. Smukowski CS, Noor MAF. 2011. Recombination rate variation in closely related species. Heredity 107, 496–508. ( 10.1038/hdy.2011.44) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Bell G. 1982. The masterpeice of nature. The evolution and genetics of sexuality. London, UK: Coom Helm. [Google Scholar]

16. Johnston SE, Berenos C, Slate J, Pemberton JM. 2016. Conserved genetic architecture underlying individual recombination rate variation in a wild population of soay sheep (Ovis aries). Genetics. 203, 583–598. ( 10.1534/genetics.115.185553) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840. ( 10.1126/science.1183439) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Ma L, et al. 2015. Cattle sex-specific recombination and genetic control from a large pedigree analysis. PLoS Genet. 11, e1005387 ( 10.1371/journal.pgen.1005387) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Dumont BL, Broman KW, Payseur BA. 2009. Variation in genomic recombination rates among heterogeneous stock mice. Genetics 182, 1345–1349. ( 10.1534/genetics.109.105114) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Hunter CM, Huang W, Mackay TFC, Singh ND. 2016. The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS Genet. 12, e1005951 ( 10.1371/journal.pgen.1005951) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Chinnici JP. 1971. Modification of recombination frequency in Drosophila. I. Selection for increased and decreased crossing over. Genetics 69, 71–83. [PMC free article] [PubMed] [Google Scholar]

22. Shaw DD. 1972. Gentic and environmental components of chiasma control. 2. Response to selection in Schistocerca. Chromosoma 37, 297–308. ( 10.1007/BF00319872) [PubMed] [CrossRef] [Google Scholar]

23. Wilfert L, Gadau J, Schmid-Hempel P. 2007. Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98, 189–197. ( 10.1038/sj.hdy.6800950) [PubMed] [CrossRef] [Google Scholar]

24. Lynch M. 2006. The origins of eukaryotic gene structure. Mol. Biol. Evol. 23, 450–468. ( 10.1093/molbev/msj050) [PubMed] [CrossRef] [Google Scholar]

25. Jaramillo-Correa JP, Verdú M, González-Martínez SC. 2010. The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol. Biol. 10, 22 ( 10.1186/1471-2148-10-22) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Nachman MW, Payseur BA. 2012. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Phil. Trans. R. Soc. B 367, 409–421. ( 10.1098/rstb.2011.0249) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Tiley GP, Burleigh G. 2015. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol. Biol. 15, 194 ( 10.1186/s12862-015-0473-3) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Ball A, Stapley J, Dawson D, Birkhead T, Burke T, Slate J. 2010. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genom. 11, 218 ( 10.1186/1471-2164-11-218) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Slate J. 2008. Robustness of linkage maps in natural populations: a simulation study. Proc. R. Soc. B 275, 695–702. ( 10.1098/rspb.2007.0948) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Stumpf MPH, McVean GAT. 2003. Estimating recombination rates from population-genetic data. Nat. Rev. Genet. 4, 959–968. ( 10.1038/nrg1227) [PubMed] [CrossRef] [Google Scholar]

31. Chan AH, Jenkins PA, Song YS. 2012. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLoS Genet. 8, e1003090 ( 10.1371/journal.pgen.1003090) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Auton A, et al. 2012. A fine-scale chimpanzee genetic map from population sequencing. Science 336, 193–198. ( 10.1126/science.1216872) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Reddy CB, Hickerson MJ, Frantz LAF, Lohse K. 2016. Blockwise site frequency spectra for inferring complex population histories and recombination. bioRxiv. ( 10.1101/077958) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Kawakami T, Mugal CF, Suh A, Nater A, Burri R, Smeds L, Ellegren H. 2017. Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds. Mol. Ecol. 26, 4158–4172. ( 10.1111/mec.14197) [PubMed] [CrossRef] [Google Scholar]

35. Axelsson E, Webster MT, Ratnakumar A, The LC, Ponting CP, Lindblad-Toh K. 2012. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res. 22, 51–63. ( 10.1101/gr.124123.111) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Kong A, et al. 2010. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467, 1099–1103. ( 10.1038/nature09525) [PubMed] [CrossRef] [Google Scholar]

37. Stapley J, Birkhead TR, Burke T, Slate J. 2010. Pronounced inter- and intrachromosomal variation in linkage disequilibrium across the zebra finch genome. Genome Res. 20, 496–502. ( 10.1101/gr.102095.109) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Odenthal-Hesse L, Berg IL, Veselis A, Jeffreys AJ, May CA. 2014. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive. PLoS Genet. 10, e1004106 ( 10.1371/journal.pgen.1004106) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Xu S, Ackerman MS, Long H, Bright L, Spitze K, Ramsdell JS, Thomas WK, Lynch M. 2015. A male-specific genetic map of the microcrustacean Daphnia pulex based on single-sperm whole-genome sequencing. Genetics 201, 31–38. ( 10.1534/genetics.115.179028) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Hillers KJ. 2004. Crossover interference. Curr. Biol. 14, R1036–R1037. ( 10.1016/j.cub.2004.11.038) [PubMed] [CrossRef] [Google Scholar]

41. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD. 2000. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 11 383–11 390. ( 10.1073/pnas.97.21.11383) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Croll D, Lendenmann MH, Stewart E, McDonald BA. 2015. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics. 201, 1213–1228. ( 10.1534/genetics.115.180968) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Choi K, Henderson IR. 2015. Meiotic recombination hotspots—a comparative view. Plant J. 83, 52–61. ( 10.1111/tpj.12870) [PubMed] [CrossRef] [Google Scholar]

44. Latrille T, Duret L, Lartillot N. 2017. The Red-Queen model of recombination hot-spot evolution: a the- oretical investigation. Phil. Trans. R. Soc. B 372, 20160463 ( 10.1098/rstb.2016.0463) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Singhal S, et al. 2015. Stable recombination hotspots in birds. Science 350, 928–932. ( 10.1126/science.aad0843) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Rockman MV, Kruglyak L. 2009. Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet. 5, e1000419 ( 10.1371/journal.pgen.1000419) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Wallberg A, Glémin S, Webster MT. 2015. Extreme recombination frequencies shape genome variation and evolution in the honeybee, Apis mellifera. PLoS Genet. 11, e1005189 ( 10.1371/journal.pgen.1005189) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Comeron JM, Ratnappan R, Bailin S. 2012. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 8, e1002905 ( 10.1371/journal.pgen.1002905) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Smukowski Heil CS, Ellison C, Dubin M, Noor MAF. 2015. Recombining without hotspots: a comprehensive evolutionary portrait of recombination in two closely related species of Drosophila. Genom. Biol. Evol. 7, 2829–2842. ( 10.1093/gbe/evv182) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Awadalla P. 2003. The evolutionary genomics of pathogen recombination. Nat. Rev. Genet. 4, 50–60. ( 10.1038/nrg964) [PubMed] [CrossRef] [Google Scholar]

51. Thuriaux P. 1977. Is recombination confined to structural genes on the eukaryotic genome? Nature 268, 460–462. ( 10.1038/268460a0) [PubMed] [CrossRef] [Google Scholar]

52. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2013. caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5.2. https://CRAN.Rproject.org/package=caper. [Google Scholar]

53. Hinchliff CE, et al. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12 764–12 769. ( 10.1073/pnas.1423041112) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Kent TV, Uzunović J, Wright SI. 2017. Coevolution between transposable elements and recombination. Phil. Trans. R. Soc. B 372, 20160458 ( 10.1098/rstb.2016.0458) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Petrov DA. 2001. Evolution of genome size: new approaches to an old problem. Trends Genet. 17, 23–28. ( 10.1016/S0168-9525(00)02157-0) [PubMed] [CrossRef] [Google Scholar]

56. Nam K, Ellegren H. 2012. Recombination drives vertebrate genome contraction. PLoS Genet. 8, e1002680 ( 10.1371/journal.pgen.1002680) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Ross-Ibarra J. 2007. Genome size and recombination in angiosperms: a second look. J. Evol. Biol. 20, 800–806. ( 10.1111/j.1420-9101.2006.01275.x) [PubMed] [CrossRef] [Google Scholar]

58. Archie JP. 1981. Mathematic coupling of data: a common source of error. Ann. Surgery 193, 296–303. ( 10.1097/00000658-198103000-00008) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Dumont BL. 2017. Variation and evolution of the meiotic requirement for crossing over in mammals. Genetics 205, 155–168. ( 10.1534/genetics.116.192690) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Dapper AL, Payseur BA. 2017. Connecting theory and data to understand recombination rate evolution. Phil. Trans. R. Soc. B 372, 20160469 ( 10.1098/rstb.2016.0469) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Capilla L, Garcia Caldés M, Ruiz-Herrera A. 2016. Mammalian meiotic recombination: a toolbox for genome evolution. Cytogen. Genome Res. 150, 1–16. ( 10.1159/000452822) [PubMed] [CrossRef] [Google Scholar]

62. Haag CR, Theodosiou L, Zahab R, Lenormand T. 2017. Low recombination rates in sexual species and sex–asex transitions. Phil. Trans. R. Soc. B 372, 20160461 ( 10.1098/rstb.2016.0461) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Backström N, et al. 2010. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 20, 485–495. ( 10.1101/gr.101410.109) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Ross L, Blackmon H, Lorite P, Gokhman VE, Hardy NB. 2015. Recombination, chromosome number and eusociality in the Hymenoptera. J. Evol. Biol. 28, 105–116. ( 10.1111/jeb.12543) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Escudero M, Hipp AL, Hansen TF, Voje KL, Luceño M. 2012. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol. 195, 237–247. ( 10.1111/j.1469-8137.2012.04137.x) [PubMed] [CrossRef] [Google Scholar]

66. Burt A. 2000. Perspective: sex, recombination, and the efficacy of selection—was Weismann right? Evolution 54, 337–351. [PubMed] [Google Scholar]

67. Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K. 2013. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr. Biol. 23, 2151–2156. ( 10.1016/j.cub.2013.08.059) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. 2016. The challenge of evolving stable polyploidy: could an increase in ‘crossover interference distance’ play a central role? Chromosoma 125, 287–300. ( 10.1007/s00412-015-0571-4) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. 2007. Recombination: an underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 8, 77–84. ( 10.1038/nrg1970) [PubMed] [CrossRef] [Google Scholar]

70. Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Ann. Rev. Plant Biol. 66, 297–327. ( 10.1146/annurev-arplant-050213-035923) [PubMed] [CrossRef] [Google Scholar]

71. Halkka O. 1964. Recombination in six Homopterous families. Evolution 18, 81–88. ( 10.1111/j.1558-5646.1964.tb01570.x) [CrossRef] [Google Scholar]

72. Dumont BL, Payseur BA. 2008. Evolution of the genomic rate of recombination in mammals. Evolution 62, 276–294. ( 10.1111/j.1558-5646.2007.00278.x) [PubMed] [CrossRef] [Google Scholar]

73. Sax K. 1934. Variation in chiasma frequency in secale, Vicia and Tradescantia. Cytologia 6, 289–293. ( 10.1508/cytologia.6.289) [CrossRef] [Google Scholar]

74. Rees H, Ahmad K. 1963. Chiasma frequencies in Lolium populations. Evolution 17, 575–579. ( 10.1111/j.1558-5646.1963.tb03315.x) [CrossRef] [Google Scholar]

75. Slizynski BM. 1955. Chiasmata in the male mouse. J. Genet. 53, 597–605. ( 10.1007/BF02981678) [CrossRef] [Google Scholar]

76. Sanchez-Moran E, Armstrong SJ, Santos JL, Franklin FCH, Jones GH. 2002. Variation in chiasma frequency among eight accessions of Arabidopsis thaliana. Genetics 162, 1415–1422. [PMC free article] [PubMed] [Google Scholar]

77. Weissman DB. 1976. Geographical variability in the pericentric inversion system of the grasshopper Trimerotropis pseudofasciata. Chromosoma 55, 325–347. ( 10.1007/BF00292829) [PubMed] [CrossRef] [Google Scholar]

78. Price DJ, Bantock CR. 1975. Marginal populations of Cepaea nemoralis (L.) on the brendon hills, England. II. Variation in chiasma frequency. Evolution 29, 278–286. ( 10.1111/j.1558-5646.1975.tb00208.x) [PubMed] [CrossRef] [Google Scholar]

79. Gibbs PE, Milne C, Carrillo MV. 1975. Correlation between the breeding system and recombination index in five species of Senecio. New Phytol. 75, 619–626. ( 10.1111/j.1469-8137.1975.tb01428.x) [CrossRef] [Google Scholar]

80. Zarchi Y, Simchen G, Hillel J, Schaap T. 1972. Chiasmata and the breeding system in wild populations of diploid wheats. Chromosoma 38, 77–94. ( 10.1007/BF00319956) [CrossRef] [Google Scholar]

81. Gion J-M, Hudson CJ, Lesur I, Vaillancourt RE, Potts BM, Freeman JS. 2016. Genome-wide variation in recombination rate in Eucalyptus. BMC Genom. 17, 590 ( 10.1186/s12864-016-2884-y) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Ross JA, Koboldt DC, Staisch JE, Chamberlin HM, Gupta BP, Miller RD, Baird SE, Haag ES. 2011. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genet. 7, e1002174 ( 10.1371/journal.pgen.1002174) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Bauer E, et al. 2013. Intraspecific variation of recombination rate in maize. Genom. Biol. 14, R103 ( 10.1186/gb-2013-14-9-r103) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. van Oers K, Santure AW, De Cauwer I, van Bers NEM, Crooijmans R, Sheldon BC, Visser ME, Slate J, Groenen MAM. 2014. Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity 112, 307–316. ( 10.1038/hdy.2013.107) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Ross CR, DeFelice DS, Hunt GJ, Ihle KE, Amdam GV, Rueppell O. 2015. Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.). BMC Genom. 16, 107 ( 10.1186/s12864-015-1281-2) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Smagulova F, Brick K, Pu Y, Camerini-Otero RD, Petukhova GV. 2016. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev. 30, 266–280. ( 10.1101/gad.270009.115) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Lam I, Keeney S. 2015. Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science 350, 932–937. ( 10.1126/science.aad0814) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, Przeworski M. 2017. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. eLife 6, e24133 ( 10.7554/eLife.24133) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Lenormand T, Dutheil J. 2005. Recombination difference between sexes: a role for haploid selection. PLoS Biol. 3, 396–403. ( 10.1371/journal.pbio.0030063) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Brandvain Y, Coop G. 2012. Scrambling eggs: meiotic drive and the evolution of female recombination rates. Genetics 190, 709–723. ( 10.1534/genetics.111.136721) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Hedrick PW. 2007. Sex: differences in mutation, recombination, selection, gene flow, and genetic drift. Evolution 61, 2750–2771. ( 10.1111/j.1558-5646.2007.00250.x) [PubMed] [CrossRef] [Google Scholar]

92. Haldane JBS. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101–109. ( 10.1007/BF02983075) [CrossRef] [Google Scholar]

93. Huxley J. 1928. Sexual difference in linkage in Gammarus chevreuxi. J. Genet. 20, 145–156. ( 10.1007/BF02983136) [CrossRef] [Google Scholar]

94. Nei M. 1969. Linkage modification and sex difference in recombination. Genetics 63, 681–699. [PMC free article] [PubMed] [Google Scholar]

95. Wang S, Zhang LL, Meyer E, Matz MV. 2009. Construction of a high-resolution genetic linkage map and comparative genome analysis for the reef-building coral Acropora millepora. Genom. Biol. 10, R126 ( 10.1186/gb-2009-10-11-r126) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Burt A, Bell G, Harvey PH. 1991. Sex differences in recombination. J. Evol. Biol. 4, 259–277. ( 10.1046/j.1420-9101.1991.4020259.x) [CrossRef] [Google Scholar]

97. Singh ND, Criscoe DR, Skolfield S, Kohl KP, Keebaugh ES, Schlenke TA. 2015. Fruit flies diversify their offspring in response to parasite infection. Science 349, 747–750. ( 10.1126/science.aab1768) [PubMed] [CrossRef] [Google Scholar]

98. Kong A, et al. 2014. Common and low-frequency variants associated with genome-wide recombination rate. Nat. Genet. 46, 11–16. ( 10.1038/ng.2833) [PubMed] [CrossRef] [Google Scholar]

99. Li F, De Storme N, Geelen D. 2017. Dynamics of male meiotic recombination frequency during plant development using fluorescent tagged lines in Arabidopsis thaliana. Sci. Rep. 7, 42535 ( 10.1038/srep42535) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytol. 208, 306–323. ( 10.1111/nph.13499) [PubMed] [CrossRef] [Google Scholar]

101. Stevison L, Sefick S, Rushton C, Graze R. 2017. Recombination rate plasticity: revealing mechanisms by design. Phil. Trans. R. Soc. B 372, 20160459 ( 10.1098/rstb.2016.0459) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Martin HC, et al. 2015. Multicohort analysis of the maternal age effect on recombination. Nat. Commun. 6, 7846 ( 10.1038/ncomms8846) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Hussin J, Roy-Gagnon M-H, Gendron R, Andelfinger G, Awadalla P. 2011. Age-dependent recombination rates in human pedigrees. PLoS Genet. 7, e1002251 ( 10.1371/journal.pgen.1002251) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Speed RM. 1977. The effects of ageing on the meiotic chromosomes of male and female mice. Chromosoma 64, 241–254. ( 10.1007/BF00328080) [PubMed] [CrossRef] [Google Scholar]

105. Henderson SA, Edwards RG. 1968. Chiasma frequency and maternal age in mammals. Nature 218, 22–28. ( 10.1038/218022a0) [PubMed] [CrossRef] [Google Scholar]

106. Campbell CL, Furlotte NA, Eriksson N, Hinds D, Auton A. 2015. Escape from crossover interference increases with maternal age. Nat. Commun. 6, 6260 ( 10.1038/ncomms7260) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Vrooman LA, Nagaoka SI, Hassold TJ, Hunt PA. 2014. Evidence for paternal age-related alterations in meiotic chromosome dynamics in the mouse. Genetics 196, 385–396. ( 10.1534/genetics.113.158782) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Wang ZY, Shen BT, Jiang JC, Li JQ, Ma L. 2016. Effect of sex, age and genetics on crossover interference in cattle. Sci. Rep. 6, 37698 ( 10.1038/srep37698) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Morgan CH, Zhang H, Bomblies K. 2017. Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex? Phil. Trans. R. Soc. B 372, 20160470 ( 10.1098/rstb.2016.0470) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Phillips D, et al. 2015. The effect of temperature on the male and female recombination landscape of barley. New Phytol. 208, 421–429. ( 10.1111/nph.13548) [PubMed] [CrossRef] [Google Scholar]

111. Salathé M, Kouyos RD, Bonhoeffer S. 2009. On the causes of selection for recombination underlying the red queen hypothesis. Am. Nat. 174, S31–S42. ( 10.1086/599085) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Fischer O, Schmid-Hempel P. 2005. Selection by parasites may increase host recombination frequency. Biol. Lett. 1, 193–195. ( 10.1098/rsbl.2005.0296) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Kerstes NA, Bérénos C, Schmid-Hempel P, Wegner KM. 2012. Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol. Biol. 12, 18 ( 10.1186/1471-2148-12-18) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B. 2003. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423, 760–762. ( 10.1038/nature01683) [PubMed] [CrossRef] [Google Scholar]

115. Andronic L. 2012. Viruses as triggers of DNA rearrangements in host plants. Can. J. Plant Sci. 92, 1083–1091. ( 10.4141/cjps2011-197) [CrossRef] [Google Scholar]

116. Dumont BL, Devlin AA, Truempy DM, Miller JC, Singh ND. 2015. No evidence that infection alters global recombination rate in house mice. PLoS ONE 10, e0142266 ( 10.1371/journal.pone.0142266) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Greeff M, Schmid-Hempel P. 2010. Influence of co-evolution with a parasite, Nosema whitei, and population size on recombination rates and fitness in the red flour beetle, Tribolium castaneum. Genetica 138, 737–744. ( 10.1007/s10709-010-9454-z) [PubMed] [CrossRef] [Google Scholar]

118. Brachet E, Sommermeyer V, Borde V. 2012. Interplay between modifications of chromatin and meiotic recombination hotspots. Biol. Cell 104, 51–69. ( 10.1111/boc.201100113) [PubMed] [CrossRef] [Google Scholar]

119. Pan J, et al. 2011. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731. ( 10.1016/j.cell.2011.02.009) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Borde V, de Massy B. 2013. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr. Opin. Genet. Dev. 23, 147–155. ( 10.1016/j.gde.2012.12.002) [PubMed] [CrossRef] [Google Scholar]

121. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B. 2002. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611–1622. [PubMed] [Google Scholar]

122. Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. 2008. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485. ( 10.1038/nature07135) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Gray MM, Granka J, Bustamante CD, Sutter N, Boyko A, Zhu L, Ostrander E, Wayne R. 2009. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics. 181, 1493–1505. ( 10.1534/genetics.108.098830) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Khan A, et al. 2005. Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii. Nucleic Acid Res. 33, 2980–2992. ( 10.1093/nar/gki604) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Kirkpatrick M. 2010. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 ( 10.1371/journal.pbio.1000501) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Farré M, Micheletti D, Ruiz-Herrera A. 2013. Recombination rates and genomic shuffling in human and chimpanzee—a new twist in the chromosomal speciation theory. Mol. Biol. Evol. 30, 853–864. ( 10.1093/molbev/mss272) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Dumas D, Catalan J, Britton-davidian J. 2015. Reduced recombination patterns in Robertsonian hybrids between chromosomal races of the house mouse: chiasma analyses. Heredity 114, 56–64. ( 10.1038/hdy.2014.69) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. de Vaio ES, Goñi B, Rey C. 1979. Chromosome polymorphism in populations of the grasshopper Trimerotropis pallidipennis from southern Argentina. Chromosoma 71, 371–386. ( 10.1007/BF00287142) [CrossRef] [Google Scholar]

129. Lucchesi JC, Suzuki DT. 1968. The interchromosomal control of recombination. Ann. Rev. Genet. 2, 53–86. ( 10.1146/annurev.ge.02.120168.000413) [CrossRef] [Google Scholar]

130. Talbert PB, Henikoff S. 2010. Centromeres convert but don't cross. PLoS Biol. 8, e1000326 ( 10.1371/journal.pbio.1000326) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Petkov PM, Broman KW, Szatkiewicz JP, Paigen K. 2007. Crossover interference underlies sex differences in recombination rates. Trends Genet. 23, 539–542. ( 10.1016/j.tig.2007.08.015) [PubMed] [CrossRef] [Google Scholar]

132. Melamed-Bessudo C, Shilo S, Levy AA. 2016. Meiotic recombination and genome evolution in plants. Curr. Opin. Plant Biol. 30, 82–87. ( 10.1016/j.pbi.2016.02.003) [PubMed] [CrossRef] [Google Scholar]

133. Eyre-Walker A. 1993. Recombination and mammalian genome evolution. Proc. R. Soc. B 252, 237–243. ( 10.1098/rspb.1993.0071) [PubMed] [CrossRef] [Google Scholar]

134. Marais G, Mouchiroud D, Duret L. 2001. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc. Natl Acad. Sci. USA 98, 5688–5692. ( 10.1073/pnas.091427698) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Webster MT, Axelsson E, Ellegren H. 2006. Strong regional biases in nucleotide substitution in the chicken genome. Mol. Biol. Evol. 23, 1203–1216. ( 10.1093/molbev/msk008) [PubMed] [CrossRef] [Google Scholar]

136. Muyle A, Serres-Giardi L, Ressayre A, Escobar J, Glémin S. 2011. GC-Biased gene conversion and selection affect GC content in the Oryza genus (rice). Mol. Biol. Evol. 28, 2695–2706. ( 10.1093/molbev/msr104) [PubMed] [CrossRef] [Google Scholar]

137. Marsolier-Kergoat M-C, Yeramian E. 2009. GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics. 183, 31–38. ( 10.1534/genetics.109.105049) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Petes TD, Merker JD. 2002. Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition. Genetics 162, 2049–2052. [PMC free article] [PubMed] [Google Scholar]

139. Qiao H, et al. 2014. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194–199. ( 10.1038/ng.2858) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Ziolkowski PA, et al. 2017. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306–317. ( 10.1101/gad.295501.116) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Petit M, Astruc J-M, Sarry J, Drouilhet L, Fabre S, Moreno CR, Servin B. 2017. Variation in recombination rate and its genetic determinism in sheep populations. Genetics 207, 767–784. [PMC free article] [PubMed] [Google Scholar]

142. Reynolds A, et al. 2013. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 45, 269–278. ( 10.1038/ng.2541) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV. 2011. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472, 375–378. ( 10.1038/nature09869) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Yelina NE, Ziolkowski PA, Miller N, Zhao X, Kelly KA, Muñoz DF, Mann DJ, Copenhaver GP, Henderson IR. 2013. High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana. Nat. Protoc. 8, 2119–2134. ( 10.1038/nprot.2013.131) [PubMed] [CrossRef] [Google Scholar]

145. Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. 2016. Evolutionary mysteries in meiosis. Phil. Trans. R. Soc. B 371, 20160001 ( 10.1098/rstb.2016.0001) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Kaur T, Rockman MV. 2014. Crossover heterogeneity in the absence of hotspots in Caenorhabditis elegans. Genetics 196, 137–148. ( 10.1534/genetics.113.158857) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Chung G, Rose AM, Petalcorin MIR, Martin JS, Kessler Z, Sanchez-Pulido L, Ponting CP, Yanowitz JL, Boulton SJ. 2015. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes Dev. 29, 1969–1979. ( 10.1101/gad.266056.115) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Kong A, et al. 2004. Recombination rate and reproductive success in humans. Nat. Genet. 36, 1203–1206. ( 10.1038/ng1445) [PubMed] [CrossRef] [Google Scholar]

149. Dewees AA. 1975. Genetic modification of recombination rate in Tribolium castaneum. Genetics 81, 537–552. [PMC free article] [PubMed] [Google Scholar]

150. Barton NH, Servedio MR. 2015. The interpretation of selection coefficients. Evolution 69, 1101–1112. ( 10.1111/evo.12641) [PubMed] [CrossRef] [Google Scholar]

151. Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78, 737–756. [PMC free article] [PubMed] [Google Scholar]

152. Otto SP, Barton NH. 2001. Selection for recombination in small populations. Evolution 55, 1921–1931. ( 10.1111/j.0014-3820.2001.tb01310.x) [PubMed] [CrossRef] [Google Scholar]

153. Lenormand T, Otto SP. 2000. The evolution of recombination in a heterogeneous environment. Genetics. 156, 423–438. [PMC free article] [PubMed] [Google Scholar]

154. Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. ( 10.1038/nrg.2016.58) [PubMed] [CrossRef] [Google Scholar]

155. Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294. ( 10.1017/S0016672300010156) [PubMed] [CrossRef] [Google Scholar]

156. Burt A, Bell G. 1987. Mammalian chiasma frequencies as a test of two theories of recombination. Nature 326, 803–805. ( 10.1038/326803a0) [PubMed] [CrossRef] [Google Scholar]

157. Stebbins GL. 1950. Variation and evolution in plants. New York, Columbia: Columbia University Press. [Google Scholar]

158. Chiang T, Schultz RM, Lampson MA. 2012. Meiotic origins of maternal age-related aneuploidy. Biol. Reprod. 86, 3 ( 10.1095/biolreprod.111.094367) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Aggarwal DD, Rashkovetsky E, Michalak P, Cohen I, Ronin Y, Zhou D, Haddad GG, Korol AB. 2015. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits. BMC Biol. 13, 101 ( 10.1186/s12915-015-0206-5) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Korol AB, Iliadi KG. 1994. Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. Heredity 72, 64–68. ( 10.1038/hdy.1994.7) [PubMed] [CrossRef] [Google Scholar]

161. Ross-Ibarra J. 2004. The evolution of recombination under domestication: a test of two hypotheses. Am. Nat. 163, 105–112. ( 10.1086/380606) [PubMed] [CrossRef] [Google Scholar]

162. Muñoz-Fuentes V, et al. 2014. Strong artificial selection in domestic mammals did not result in an increased recombination rate. Mol. Biol. Evol. 32, 510–523. ( 10.1093/molbev/msu322) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Otto SP, Michalakis Y. 1998. The evolution of recombination in changing environments. Trends Ecol. Evol. 13, 145–151. ( 10.1016/S0169-5347(97)01260-3) [PubMed] [CrossRef] [Google Scholar]

164. Dapper AL, Lively CM. 2014. Inter-locus sexually antagonistic coevolution can create indirect selection for increased recombination. Evolution 68, 1216–1224. ( 10.1111/evo.12338) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Fulton JE, McCarron AM, Lund AR, Pinegar KN, Wolc A, Chazara O, Bed'Hom B, Berres M, Miller MM. 2016. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet. Sel. Evol. 48, 1 ( 10.1186/s12711-015-0181-x) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Choi K, et al. 2016. Recombination rate heterogeneity within Arabidopsis disease resistance genes. PLoS Genet. 12, e1006179 ( 10.1371/journal.pgen.1006179) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Market E, Papavasiliou FN. 2003. V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol. 1, e16 ( 10.1371/journal.pbio.0000016) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Salathé M, Kouyos RD, Regoes RR, Bonhoeffer S, Van Baalen M. 2008. Rapid parasite adaptation drives selection for high recombination rates. Evolution 62, 295–300. ( 10.1111/j.1558-5646.2007.00265.x) [PubMed] [CrossRef] [Google Scholar]

169. Wright SI. 2017. Evolution of genome size. In eLS, 1–6. John Wiley & Sons, Ltd. [Google Scholar]

170. Alves I, Houle AA, Hussin JG, Awadalla P. 2017. The impact of recombination on human mutation load and disease. Phil. Trans. R. Soc. B 372, 20160465 ( 10.1098/rstb.2016.0465) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Cvetković D, Tucić N. 1986. Female recombination rates and fitness in Drosophila melanogaster. J. Zool. Syst. Evol. Res. 24, 198–207. ( 10.1111/j.1439-0469.1986.tb00628.x) [CrossRef] [Google Scholar]

172. Tucić N, Ayala FJ, Marinković D. 1981. Correlation between recombination frequency and fitness in Drosophila melanogaster. Genetica 56, 61–69. ( 10.1007/BF00126931) [CrossRef] [Google Scholar]

173. Tigano A, Friesen VL. 2016. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164. ( 10.1111/mec.13606) [PubMed] [CrossRef] [Google Scholar]

174. Yeaman S. 2013. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc. Natl Acad. Sci. USA 110, E1743–E1751. ( 10.1073/pnas.1219381110) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Thompson MJ, Jiggins CD. 2014. Supergenes and their role in evolution. Heredity 113, 1–8. ( 10.1038/hdy.2014.20) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Feder JL, Egan SP, Nosil P. 2012. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342–350. ( 10.1016/j.tig.2012.03.009) [PubMed] [CrossRef] [Google Scholar]

177. Anderson AR, Hoffmann AA, McKechnie SW, Umina PA, Weeks AR. 2005. The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogaster populations. Mol. Ecol. 14, 851–858. ( 10.1111/j.1365-294X.2005.02445.x) [PubMed] [CrossRef] [Google Scholar]

178. Cheng C, White BJ, Kamdem C, Mockaitis K, Costantini C, Hahn MW, Besansky NJ. 2012. Ecological genomics of Anopheles gambiae along a latitudinal cline: a population-resequencing approach. Genetics 190, 1417–1432. ( 10.1534/genetics.111.137794) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Wellenreuther M, Rosenquist H, Jaksons P, Larson KW. 2017. Local adaptation along an environmental cline in a species with an inversion polymorphism. J. Evol. Biol. 30, 1068–1077. ( 10.1111/jeb.13064) [PubMed] [CrossRef] [Google Scholar]

180. Stefansson H, et al. 2005. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137. ( 10.1038/ng1508) [PubMed] [CrossRef] [Google Scholar]

181. Joron M, et al. 2011. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206. ( 10.1038/nature10341) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Jones FC, et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61. ( 10.1038/nature10944) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, Jakobsen KS, André C. 2015. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genom. Biol. Evol. 7, 1644–1663. ( 10.1093/gbe/evv093) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Twyford AD, Friedman J. 2015. Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion. Evolution 69, 1476–1486. ( 10.1111/evo.12663) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Wadsworth CB, Li X, Dopman EB. 2015. A recombination suppressor contributes to ecological speciation in OSTRINIA moths. Heredity 114, 593–600. ( 10.1038/hdy.2014.128) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Lee C-R, et al. 2017. Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat. Ecol. Evol. 1, 0119 ( 10.1038/s41559-017-0119) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Kitano J, et al. 2009. A role for a neo-sex chromosome in stickleback speciation. Nature 461, 1079–1083. ( 10.1038/nature08441) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Balcova M. et al. 2016. Hybrid sterility locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet. 12, e1005906 ( 10.1371/journal.pgen.1005906) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Ayala D, Fontaine MC, Cohuet A, Fontenille D, Vitalis R, Simard F. 2011. Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. Mol. Biol. Evol. 28, 745–758. ( 10.1093/molbev/msq248) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Michel AP, Sim S, Powell THQ, Taylor MS, Nosil P, Feder JL. 2010. Widespread genomic divergence during sympatric speciation. Proc. Natl Acad. Sci. USA 107, 9724–9729. ( 10.1073/pnas.1000939107) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. McGaugh SE, Noor MAF. 2012. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Phil. Trans. R. Soc. B 367, 422–429. ( 10.1098/rstb.2011.0250) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Britton-Davidian J, Caminade P, Davidian E, Pagès M. 2017. Does chromosomal change restrict gene flow between house mouse populations (Mus musculus domesticus)? Evidence from microsatellite polymorphisms. Biol. J. Linn. Soc. 122, 224–240. ( 10.1093/biolinnean/blx053) [CrossRef] [Google Scholar]

193. Gould BA, Chen Y, Lowry DB. 2017. Pooled ecotype sequencing reveals candidate genetic mechanisms for adaptive differentiation and reproductive isolation. Mol. Ecol. 26, 163–177. ( 10.1111/mec.13881) [PubMed] [CrossRef] [Google Scholar]

194. Turner TL, Hahn MW, Nuzhdin SV. 2005. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 3, e285 ( 10.1371/journal.pbio.0030285) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Gante HF, Matschiner M, Malmstrøm M, Jakobsen KS, Jentoft S, Salzburger W. 2016. Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Mol. Ecol. 25, 6143–6161. ( 10.1111/mec.13767) [PubMed] [CrossRef] [Google Scholar]

196. Carneiro M, et al. 2014. The genomic architecture of population divergence between subspecies of the European Rabbit. PLoS Genet. 10, e1003519 ( 10.1371/journal.pgen.1003519) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Crawford JE, Riehle MM, Guelbeogo WM, Gneme A, Sagnon NF, Vernick KD, Nielsen R, Lazzaro BP. 2015. Reticulate speciation and barriers to introgression in the Anopheles gambiae species complex. Genom. Biol. Evol. 7, 3116–3131. ( 10.1093/gbe/evv203) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL. 2014. Speciation and introgression between Mimulus nasutus and Mimulus guttatus. PLoS Genet. 10, e1004410 ( 10.1371/journal.pgen.1004410) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Burri R, et al. 2015. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665. ( 10.1101/gr.196485.115) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Feulner PGD, et al. 2015. Genomics of divergence along a continuum of parapatric population differentiation. PLoS Genet. 11, e1004966 ( 10.1371/journal.pgen.1004966) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Vijay N, Bossu CM, Poelstra JW, Weissensteiner MH, Suh A, Kryukov AP, Wolf JBW. 2016. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat. Commun. 7, 13195 ( 10.1038/ncomms13195) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Wang J, Street NR, Scofield DG, Ingvarsson PK. 2016. Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Mol. Biol. Evol. 33, 1754–1767. ( 10.1093/molbev/msw051) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Han F, Lamichhaney S, Grant BR, Grant PR, Andersson L, Webster MT. 2017. Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches. Genome Res. 27, 1004–1015. ( 10.1101/gr.212522.116) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Renaut S, Grassa CJ, Yeaman S, Moyers BT, Lai Z, Kane NC, Bowers JE, Burke JM, Rieseberg LH. 2013. Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat. Commun. 4, 1827 ( 10.1038/ncomms2833) [PubMed] [CrossRef] [Google Scholar]

205. Phifer-Rixey M, Bomhoff M, Nachman MW. 2014. Genome-wide patterns of differentiation among house mouse subspecies. Genetics 198, 283–297. ( 10.1534/genetics.114.166827) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Keinan A, Reich D. 2010. Human population differentiation is strongly correlated with local recombination rate. PLoS Genet. 6, e1000886 ( 10.1371/journal.pgen.1000886) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Roesti M, Moser D, Berner D. 2013. Recombination in the threespine stickleback genome—patterns and consequences. Mol. Ecol. 22, 3014–3027. ( 10.1111/mec.12322) [PubMed] [CrossRef] [Google Scholar]

208. Janoušek V, Munclinger P, Wang L, Teeter KC, Tucker PK. 2015. Functional organization of the genome may shape the species boundary in the house mouse. Mol. Biol. Evol. 32, 1208–1220. ( 10.1093/molbev/msv011) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Samuk K, Owens GL, Delmore KE, Miller S, Rennison DJ, Schluter D. 2017. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390. ( 10.1111/mec.14226) [PubMed] [CrossRef] [Google Scholar]

210. Lenormand T. 2003. The evolution of sex dimorphism in recombination. Genetics 163, 811–822. [PMC free article] [PubMed] [Google Scholar]

211. Mank JE. 2009. The evolution of heterochiasmy: the role of sexual selection and sperm competition in determining sex-specific recombination rates in eutherian mammals. Genet. Res. 91, 355–363. ( 10.1017/S0016672309990255) [PubMed] [CrossRef] [Google Scholar]

212. Haig D, Grafen A. 1991. Genetic scrambling as a defence against meiotic drive. J. Theor. Biol. 153, 531–558. ( 10.1016/S0022-5193(05)80155-9) [PubMed] [CrossRef] [Google Scholar]

213. Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA. 2014. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 24, 2295–2300. ( 10.1016/j.cub.2014.08.017) [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Why is the recombination frequency you calculated likely an underestimate?

Comparing recombination landscape and frequency (REC) across different taxonomic and spatial scales (boxes on the left) provides complementary data to address outstanding questions about how and why recombination varies (boxes on right).

  • Why is the recombination frequency you calculated likely an underestimate?
  • Why is the recombination frequency you calculated likely an underestimate?
  • Why is the recombination frequency you calculated likely an underestimate?

Click on the image to see a larger version.