What side effects of chemotherapy put a patient at increased risk of infection?

1. Gudiol C., Aguado J.M., Carratalà J. Bloodstream infections in patients with solid tumors. Virulence. 2016;7:298–308. doi: 10.1080/21505594.2016.1141161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Safdar A., Armstrong D. Infectious morbidity in critically ill patients with cancer. Crit. Care Clin. 2001;17:531–570. doi: 10.1016/S0749-0704(05)70198-6. [PubMed] [CrossRef] [Google Scholar]

3. Rolston K.V.I. Infections in Cancer Patients with Solid Tumors: A Review. Infect. Dis. Ther. 2017;6:69–83. doi: 10.1007/s40121-017-0146-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Williams M.D., Braun L.A., Cooper L.M., Johnston J., Weiss R.V., Qualy R.L., Linde-Zwirble W. Hospitalized cancer patients with severe sepsis: Analysis of incidence, mortality, and associated costs of care. Crit. Care. 2004;8:R291–R298. doi: 10.1186/cc2893. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Schelenz S., Nwaka D., Hunter P.R. Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J. Antimicrob. Chemother. 2013;68:1431–1438. doi: 10.1093/jac/dkt002. [PubMed] [CrossRef] [Google Scholar]

6. Zheng Y., Chen Y., Yu K., Yang Y., Wang X., Yang X., Qian J., Liu Z.-X., Wu B. Fatal Infections among Cancer Patients: A Population-Based Study in the United States. Infect. Dis. Ther. 2021;10:871–895. doi: 10.1007/s40121-021-00433-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology. Prevention and Treatment of Cancer-Related Infections 1. 2021. [(accessed on 21 September 2021)]. Available online: //www.nccn.org/professionals/physician_gls/pdf/infections.pdf

8. Marin M., Gudiol C., Ardanuy C., Garcia-Vidal C., Calvo M., Arnan M., Carratalà J. Bloodstream infections in neutropenic patients with cancer: Differences between patients with haematological malignancies and solid tumours. J. Infect. 2014;69:417–423. doi: 10.1016/j.jinf.2014.05.018. [PubMed] [CrossRef] [Google Scholar]

9. Fillatre P., Decaux O., Jouneau S., Revest M., Gacouin A., Robert-Gangneux F., Fresnel A., Guiguen C., Le Tulzo Y., Jégo P., et al. Incidence of Pneumocystis jiroveci Pneumonia among Groups at Risk in HIV-negative Patients. Am. J. Med. 2014;127:1242.e11–1242.e17. doi: 10.1016/j.amjmed.2014.07.010. [PubMed] [CrossRef] [Google Scholar]

10. Klastersky J., de Naurois J., Rolston K., Rapoport B., Maschmeyer G., Aapro M., Herrstedt J. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016;27:v111–v118. doi: 10.1093/annonc/mdw325. [PubMed] [CrossRef] [Google Scholar]

11. Aapro M., Bohlius J., Cameron D., Lago L.D., Donnelly J.P., Kearney N., Lyman G., Pettengell R., Tjan-Heijnen V., Walewski J., et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer. 2011;47:8–32. doi: 10.1016/j.ejca.2010.10.013. [PubMed] [CrossRef] [Google Scholar]

12. De Miguel S.C., Calleja-Hernández M., Menjón-Beltrán S., Vallejo-Rodríguez I. Granulocyte colony-stimulating factors as prophylaxis against febrile neutropenia. Support. Care Cancer. 2015;23:547–559. doi: 10.1007/s00520-014-2459-x. [PubMed] [CrossRef] [Google Scholar]

13. Truong L.D., Shen S.S. Immunohistochemical diagnosis of renal neoplasms. Arch. Pathol. Lab. Med. 2011;135:92–109. doi: 10.5858/2010-0478-RAR.1. [PubMed] [CrossRef] [Google Scholar]

14. Perez E.A., Geeraerts L., Suman V.J., Adjei A.A., Baron A.T., Hatfield A.K., Maihle N., Michalak J.C., Kuross S.A., Kugler J.W., et al. A randomized phase II study of sequential docetaxel and doxorubicin/cyclophosphamide in patients with metastatic breast cancer. Ann. Oncol. 2002;13:1225–1235. doi: 10.1093/annonc/mdf222. [PubMed] [CrossRef] [Google Scholar]

15. von Minckwitz G., Schneeweiss A., Loibl S., Salat C., Denkert C., Rezai M., Blohmer J.U., Jackisch C., Paepke S., Gerber B., et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014;15:747–756. doi: 10.1016/S1470-2045(14)70160-3. [PubMed] [CrossRef] [Google Scholar]

16. Kosaka Y., Rai Y., Masuda N., Takano T., Saeki T., Nakamura S., Shimazaki R., Ito Y., Tokuda Y., Tamura K. Phase III placebo-controlled, double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Support. Care Cancer. 2015;23:1137–1143. doi: 10.1007/s00520-014-2597-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Gilbar P., McPherson I., Sorour N., Sanmugarajah J. High incidence of febrile neutropenia following adjuvant breast chemotherapy with docetaxel, carboplatin and trastuzumab. Breast Cancer Manag. 2014;3:327–333. doi: 10.2217/bmt.14.22. [CrossRef] [Google Scholar]

18. Marty M., Cognetti F., Maraninchi D., Snyder R., Mauriac L., Tubiana-Hulin M., Chan S., Grimes D., Antón A., Lluch A., et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–Positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J. Clin. Oncol. 2005;23:4265–4274. doi: 10.1200/JCO.2005.04.173. [PubMed] [CrossRef] [Google Scholar]

19. Sternberg C.N., De Mulder P.H., Schornagel J.H., Théodore C., Fossa S.D., Van Oosterom A.T., Witjes F., Spina M., Van Groeningen C.J., De Balincourt C., et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemo-therapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J. Clin. Oncol. 2001;19:2638–2646. doi: 10.1200/jco.2001.19.10.2638. [PubMed] [CrossRef] [Google Scholar]

20. Rose P.G., Blessing J.A., Gershenson D.M., McGehee R. Paclitaxel and cisplatin as first-line therapy in recurrent or advanced squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. 1999;17:2676–2680. doi: 10.1200/JCO.1999.17.9.2676. [PubMed] [CrossRef] [Google Scholar]

21. Long H.J., III, Bundy B.N., Grendys E.C., Jr., Benda J.A., McMeekin D.S., Sorosky J., Miller D., Eaton L.A., Fiorica J.V. Randomized Phase III Trial of Cisplatin with or without Topotecan in Carcinoma of the Uterine Cervix: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2005;23:4626–4633. doi: 10.1200/JCO.2005.10.021. [PubMed] [CrossRef] [Google Scholar]

22. Van Cutsem E., Moiseyenko V., Tjulandin S., Majlis A., Constenla M., Boni C., Rodrigues A., Fodor M., Chao Y., Voznyi E., et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the v325 study group. J. Clin. Oncol. 2006;24:4991–4997. doi: 10.1200/JCO.2006.06.8429. [PubMed] [CrossRef] [Google Scholar]

23. Roth A.D., Fazio N., Stupp R., Falk S., Bernhard J., Saletti P., Köberle D., Borner M.M., Rufibach K., Maibach R., et al. Docetaxel, cisplatin, and fluorouracil; Docetaxel and cisplatin; and epirubicin, cisplatin, and fluorouracil as systemic treatment for advanced gastric carcinoma: A randomized phase II trial of the swiss group for clinical cancer research. J. Clin. Oncol. 2007;25:3217–3223. doi: 10.1200/JCO.2006.08.0135. [PubMed] [CrossRef] [Google Scholar]

24. Cunningham D., Starling N., Rao S., Iveson T., Nicolson M., Coxon F., Middleton G., Daniel F., Oates J., Norman A.R. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 2008;358:36–46. doi: 10.1056/NEJMoa073149. [PubMed] [CrossRef] [Google Scholar]

25. Fossa S.D., Kaye S.B., Mead G.M., Cullen M., De Wit R., Bodrogi I., Van Groeningen C.J., De Mulder P.H., Stenning S., Lallemand E., et al. Filgrastim during combination chemotherapy of patients with poor-prognosis metastatic germ cell malignancy. J. Clin. Oncol. 1998;16:716–724. doi: 10.1200/JCO.1998.16.2.716. [PubMed] [CrossRef] [Google Scholar]

26. Motzer R.J., Sheinfeld J., Mazumdar M., Bajorin D.F., Bosl G.J., Herr H., Lyn P., Vlamis V. Etoposide and cisplatin adjuvant therapy for patients with pathologic stage II germ cell tumors. J. Clin. Oncol. 1995;13:2700–2704. doi: 10.1200/JCO.1995.13.11.2700. [PubMed] [CrossRef] [Google Scholar]

27. Fujiwara M., Tanaka H., Yuasa T., Komai Y., Oguchi T., Fujiwara R., Numao N., Yamamoto S., Fujii Y., Fukui I., et al. First-Line combination chemotherapy with etoposide, ifosfamide and cisplatin for the treatment of disseminated germ cell cancer: Efficacy and feasibility in current clinical practice. Int. J. Urol. 2021;28:920–926. doi: 10.1111/iju.14604. [PubMed] [CrossRef] [Google Scholar]

28. Miller K.D., Loehrer P.J., Gonin R., Einhorn L.H. Salvage chemotherapy with vinblastine, ifosfamide, and cisplatin in recurrent seminoma. J. Clin. Oncol. 1997;15:1427–1431. doi: 10.1200/JCO.1997.15.4.1427. [PubMed] [CrossRef] [Google Scholar]

29. Kondagunta G.V., Bacik J., Donadio A., Bajorin D., Marion S., Sheinfeld J., Bosl G.J., Motzer R.J. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J. Clin. Oncol. 2005;23:6549–6555. doi: 10.1200/JCO.2005.19.638. [PubMed] [CrossRef] [Google Scholar]

30. Pointreau Y., Garaud P., Chapet S., Sire C., Tuchais C., Tortochaux J., Faivre S., Guerrif S., Alfonsi M., Calais G. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J. Natl. Cancer Inst. 2009;101:498–506. doi: 10.1093/jnci/djp007. [PubMed] [CrossRef] [Google Scholar]

31. Schiller J.H., Harrington D., Belani C., Langer C., Sandler A., Krook J., Zhu J., Johnson D.H. Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer. N. Engl. J. Med. 2002;346:92–98. doi: 10.1056/NEJMoa011954. [PubMed] [CrossRef] [Google Scholar]

32. Pujol J.-L., Breton J.-L., Gervais R., Rebattu P., Depierre A., Morère J.-F., Milleron B., Debieuvre D., Castéra D., Souquet P.-J., et al. Gemcitabine–Docetaxel versus cisplatin–vinorelbine in advanced or metastatic non-small-cell lung cancer: A phase III study addressing the case for cisplatin. Ann. Oncol. 2005;16:602–610. doi: 10.1093/annonc/mdi126. [PubMed] [CrossRef] [Google Scholar]

33. Fossella F., Pereira J.R., Von Pawel J., Pluzanska A., Gorbounova V., Kaukel E., Mattson K.V., Ramlau R., Szczęsna A., Fidias P., et al. Randomized, Multinational, Phase III Study of Docetaxel Plus Platinum Combinations Versus Vinorelbine Plus Cisplatin for Advanced Non–Small-Cell Lung Cancer: The TAX 326 Study Group. J. Clin. Oncol. 2003;21:3016–3024. doi: 10.1200/JCO.2003.12.046. [PubMed] [CrossRef] [Google Scholar]

34. Font A., Moyano A.J., Puerto J.M., Tres A., Garcia-Giron C., Barneto I., Anton A., Sanchez J.J., Salvador A., Rosell R. Increasing dose intensity of cisplatin-etoposide in advanced nonsmall cell lung carcinoma. A phase III randomized trial of the spanish lung cancer group. Cancer. 1999;85:855–863. doi: 10.1002/(SICI)1097-0142(19990215)85:4<855::AID-CNCR12>3.0.CO;2-R. [PubMed] [CrossRef] [Google Scholar]

35. Cardenal F., López-Cabrerizo M.P., Antón A., Alberola V., Massuti B., Carrato A., Barneto I., Lomas M., García M., Lianes P., et al. Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 1999;17:12. doi: 10.1200/JCO.1999.17.1.12. [PubMed] [CrossRef] [Google Scholar]

36. Millward M.J., Boyer M.J., Lehnert M., Clarke S., Rischin D., Goh B.-C., Wong J., McNeil E., Bishop J.F. Docetaxel and carboplatin is an active regimen in advancednon-small-cell lung cancer: A phase II study in Caucasian and Asian patients. Ann. Oncol. 2003;14:449–454. doi: 10.1093/annonc/mdg118. [PubMed] [CrossRef] [Google Scholar]

37. Swisher E.M., Mutch D.G., Rader J.S., Elbendary A., Herzog T.J. Topotecan in platinum- and paclitaxel-resistant ovarian cancer. Gynecol. Oncol. 1997;66:480–486. doi: 10.1006/gyno.1997.4787. [PubMed] [CrossRef] [Google Scholar]

38. Verschraegen C.F., Sittisomwong T., Kudelka A.P., Guedes E.D.P., Steger M., Nelson-Taylor T., Vincent M., Rogers R., Atkinson E.N., Kavanagh J.J. Docetaxel for Patients With Paclitaxel-Resistant Müllerian Carcinoma. J. Clin. Oncol. 2000;18:2733–2739. doi: 10.1200/JCO.2000.18.14.2733. [PubMed] [CrossRef] [Google Scholar]

39. Omura G.A., Brady M.F., Look K.Y., Averette H.E., Delmore J.E., Long H.J., Wadler S., Spiegel G., Arbuck S.G. Phase III trial of paclitaxel at two dose levels, the higher dose accompanied by filgrastim at two dose levels in platinum-pretreated epithelial ovarian cancer: An intergroup study. J. Clin. Oncol. 2003;21:2843–2848. doi: 10.1200/JCO.2003.10.082. [PubMed] [CrossRef] [Google Scholar]

40. Hosein P.J., MacIntyre J., Kawamura C., Maldonado J.C., Ernani V., Loaiza-Bonilla A., Narayanan G., Ribeiro A., Portelance L., Merchan J.R., et al. A retrospective study of neoadjuvant FOLFIRINOX in unresectable or borderline-resectable locally advanced pancreatic adenocarcinoma. BMC Cancer. 2012;12:199. doi: 10.1186/1471-2407-12-199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Yilmaz U., Anar C., Polat G., Halilcolar H. Carboplatin plus etoposide for extensive stage small-cell lung cancer: An experience with AUC 6 doses of carboplatin. Indian J. Cancer. 2011;48:454–459. doi: 10.4103/0019-509X.92279. [PubMed] [CrossRef] [Google Scholar]

42. Von Pawel J., Schiller J.H., Shepherd F.A., Fields S.Z., Kleisbauer J., Chrysson N.G., Stewart D.J., Clark P.I., Palmer M.C., De Pierre A., et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J. Clin. Oncol. 1999;17:658–667. doi: 10.1200/JCO.1999.17.2.658. [PubMed] [CrossRef] [Google Scholar]

43. Lorigan P., Woll P., O’Brien M.E.R., Ashcroft L.F., Sampson M.R., Thatcher N. Randomized phase III trial of dose-dense chemotherapy supported by whole-blood hematopoietic progenitors in better-prognosis small-cell lung cancer. J. Natl. Cancer Inst. 2005;97:666–674. doi: 10.1093/jnci/dji114. [PubMed] [CrossRef] [Google Scholar]

44. White S.C., Lorigan P., Middleton M.R., Anderson H., Valle J., Summers Y., Burt P.A., Arance A., Stout R., Thatcher N. Randomized phase II study of cyclophosphamide, doxorubicin, and vincristine compared with single-agent carboplatin in patients with poor prognosis small cell lung carcinoma. Cancer. 2001;92:601–608. doi: 10.1002/1097-0142(20010801)92:3<601::AID-CNCR1360>3.0.CO;2-K. [PubMed] [CrossRef] [Google Scholar]

45. Bui B.N., Chevallier B., Chevreau C., Krakowski I., Peny A.M., Thyss A., Maugard-Louboutin C., Cupissol D., Fargeot P., Bonichon F. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J. Clin. Oncol. 1995;13:2629–2636. doi: 10.1200/JCO.1995.13.10.2629. [PubMed] [CrossRef] [Google Scholar]

46. Lorigan P., Verweij J., Papai Z., Rodenhuis S., Le Cesne A., Leahy M., Radford J., Van Glabbeke M.M., Kirkpatrick A., Hogendoorn P., et al. Phase III trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma: A european organisation for research and treatment of cancer soft tissue and bone sarcoma group study. J. Clin. Oncol. 2007;25:3144–3150. doi: 10.1200/JCO.2006.09.7717. [PubMed] [CrossRef] [Google Scholar]

47. Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009;9:324–337. doi: 10.1038/nri2546. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Kaymakcalan M., Je Y., Sonpavde G., Galsky M., Nguyen P.L., Heng D.Y.C., Richards C.J., Choueiri T.K. Risk of infections in renal cell carcinoma (RCC) and non-RCC patients treated with mammalian target of rapamycin inhibitors. Br. J. Cancer. 2013;108:2478–2484. doi: 10.1038/bjc.2013.278. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Alvarez R.H., Bechara R.I., Naughton M.J., Adachi J.A., Reuben J.M. Emerging perspectives on mtor inhibitor-associated pneumonitis in breast cancer. Oncologist. 2018;23:660–669. doi: 10.1634/theoncologist.2017-0343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Maschmeyer G., De Greef J., Mellinghoff S.C., Nosari A., Thiebaut-Bertrand A., Bergeron A., Franquet T., Blijlevens N.M.A., Maertens J.A., on behalf of the European Conference on Infections in Leukemia Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL) Leukemia. 2019;33:844–862. doi: 10.1038/s41375-019-0388-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Finn R.S., Aleshin A., Slamon D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17. doi: 10.1186/s13058-015-0661-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Hu W., Sung T., Jessen B.A., Thibault S., Finkelstein M.B., Khan N.K., Sacaan A.I. Mechanistic Investigation of Bone Marrow Suppression Associated with Palbociclib and its Differentiation from Cytotoxic Chemotherapies. Clin. Cancer Res. 2016;22:2000–2008. doi: 10.1158/1078-0432.CCR-15-1421. [PubMed] [CrossRef] [Google Scholar]

53. Gelbert L.M., Cai S., Lin X., Sanchez-Martinez C., Del Prado M., Lallena M.J., Torres R., Ajamie R.T., Wishart G.N., Flack R.S., et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-Vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig. N. Drugs. 2014;32:825–837. doi: 10.1007/s10637-014-0120-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Som A., Mandaliya R., Alsaadi D., Farshidpour M., Charabaty A., Malhotra N., Mattar M.C. Immune checkpoint inhibitor-induced colitis: A comprehensive review. World J. Clin. Cases. 2019;7:405–418. doi: 10.12998/wjcc.v7.i4.405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Hosmer W., Malin J., Wong M. Development and validation of a prediction model for the risk of developing febrile neutropenia in the first cycle of chemotherapy among elderly patients with breast, lung, colorectal, and prostate cancer. Support. Care Cancer. 2011;19:333–341. doi: 10.1007/s00520-010-0821-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Lyman G.H., Kuderer N.M., Crawford J., Wolff D.A., Culakova E., Poniewierski M.S., Dale D.C. Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer. 2011;117:1917–1927. doi: 10.1002/cncr.25691. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Aagaard T., Roen A., Reekie J., Daugaard G., Brown P.D.N., Specht L., Sengeløv H., Mocroft A., Lundgren J., Helleberg M. Development and validation of a risk score for febrile neutropenia after chemotherapy in patients with cancer: The FENCE score. JNCI Cancer Spectr. 2018;2:pky053. doi: 10.1093/jncics/pky053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Razzaghdoust A., Mofid B., Moghadam M. Development of a simplified multivariable model to predict neutropenic complications in cancer patients undergoing chemotherapy. Support. Care Cancer. 2018;26:3691–3699. doi: 10.1007/s00520-018-4224-z. [PubMed] [CrossRef] [Google Scholar]

59. Aagaard T., Reekie J., Roen A., Daugaard G., Specht L., Sengeløv H., Mocroft A., Lundgren J., Helleberg M. Development and validation of a cycle-specific risk score for febrile neutropenia during chemotherapy cycles 2–6 in patients with solid cancers: The CSR FENCE score. Int. J. Cancer. 2020;146:321–328. doi: 10.1002/ijc.32249. [PubMed] [CrossRef] [Google Scholar]

60. NCI Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. [(accessed on 22 May 2021)]; Available online: //evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf

61. Bodey G.P., Buckley M., Sathe Y.S., Freireich E.J. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 1966;64:328–340. doi: 10.7326/0003-4819-64-2-328. [PubMed] [CrossRef] [Google Scholar]

62. Castagnola E., Mikulska M., Viscoli C. Prophylaxis and Empirical Therapy of Infection in Cancer Patients. In: Bennett J.E., Dolin R., Blaser M.J., editors. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 8th ed. Elsevier; Philadelphia, PA, USA: 2015. pp. 3395–3413. [Google Scholar]

63. Nishimura N., Yamada S., Ueda K., Mishima Y., Yokoyama M., Saotome T., Terui Y., Takahashi S., Hatake K., Nishimura M. Incidence and severity of oral mucositis induced by conventional chemotherapy: A comprehensive prospective analysis of 227 cancer patients. J. Clin. Oncol. 2010;28:e19634. doi: 10.1200/jco.2010.28.15_suppl.e19634. [CrossRef] [Google Scholar]

64. Elting L.S., Chang Y.-C., Parelkar P., Boers-Doets C.B., Michelet M., Hita G., Rouleau T., Cooksley C., Halm J., Vithala M., et al. Risk of oral and gastrointestinal mucosal injury among patients receiving selected targeted agents: A meta-analysis. Support. Care Cancer. 2013;21:3243–3254. doi: 10.1007/s00520-013-1821-8. [PubMed] [CrossRef] [Google Scholar]

65. Kwitkowski V.E., Prowell T.M., Ibrahim A., Farrell A.T., Justice R., Mitchell S.S., Sridhara R., Pazdur R. FDA Approval Summary: Temsirolimus as Treatment for Advanced Renal Cell Carcinoma. Oncologist. 2010;15:428–435. doi: 10.1634/theoncologist.2009-0178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Peterson D.E., Boers-Doets C., Bensadoun R.J., Herrstedt J. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 2015;26:v139–v151. doi: 10.1093/annonc/mdv202. [PubMed] [CrossRef] [Google Scholar]

67. Böll B., Schalk E., Buchheidt D., Hasenkamp J., Kiehl M., Kiderlen T.R., Kochanek M., Koldehoff M., Kostrewa P., Claßen A.Y., et al. Central venous catheter–related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann. Hematol. 2021;100:239–259. doi: 10.1007/s00277-020-04286-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Taxbro K., Hammarskjöld F., Thelin B., Lewin F., Hagman H., Hanberger H., Berg S. Clinical impact of peripherally inserted central catheters vs implanted port catheters in patients with cancer: An open-label, randomised, two-centre trial. Br. J. Anaesth. 2019;122:734–741. doi: 10.1016/j.bja.2019.01.038. [PubMed] [CrossRef] [Google Scholar]

69. Pu Y.-L., Li Z.-S., Zhi X.-X., Shi Y.-A., Meng A.-F., Cheng F., Ali A., Li C., Fang H., Wang C. Complications and costs of peripherally inserted central venous catheters compared with implantable port catheters for cancer patients. Cancer Nurs. 2020;43:455–467. doi: 10.1097/NCC.0000000000000742. [PubMed] [CrossRef] [Google Scholar]

70. Corti F., Brambilla M., Manglaviti S., Di Vico L., Pisanu M.N., Facchinetti C., Dotti K.F., Lanocita R., Marchianò A., De Braud F., et al. Comparison of outcomes of central venous catheters in patients with solid and hematologic neoplasms: An Italian real-world analysis. Tumori J. 2021;107:17–25. doi: 10.1177/0300891620931172. [PubMed] [CrossRef] [Google Scholar]

71. Dezfulian C., Lavelle J., Nallamothu B.K., Kaufman S.R., Saint S. Rates of infection for single-lumen versus multilumen central venous catheters: A meta-analysis. Crit. Care Med. 2003;31:2385–2390. doi: 10.1097/01.CCM.0000084843.31852.01. [PubMed] [CrossRef] [Google Scholar]

72. Bouza E., Burillo A., Muñoz P. Catheter-related infections: Diagnosis and intravascular treatment. Clin. Microbiol. Infect. 2002;8:265–274. doi: 10.1046/j.1469-0691.2002.00385.x. [PubMed] [CrossRef] [Google Scholar]

73. Wisplinghoff H., Seifert H., Wenzel R.P., Edmond M. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the united states. Clin. Infect. Dis. 2003;36:1103–1110. doi: 10.1086/374339. [PubMed] [CrossRef] [Google Scholar]

74. Marcos M., Soriano A., Iñurrieta A., Martínez J.A., Romero A., Cobos N., Hernández C., Almela M., Marco F., Mensa J. Changing epidemiology of central venous catheter-related bloodstream infections: Increasing prevalence of Gram-negative pathogens. J. Antimicrob. Chemother. 2011;66:2119–2125. doi: 10.1093/jac/dkr231. [PubMed] [CrossRef] [Google Scholar]

75. Chaftari A.M., Hachem R., Jiang Y., Shah P., Hussain A., Al Hamal Z., Yousif A., Jordan M., Michael M., Raad I. Changing Epidemiology of Catheter-Related Bloodstream Infections in Cancer Patients. Infect. Control. Hosp. Epidemiol. 2018;39:727–729. doi: 10.1017/ice.2018.75. [PubMed] [CrossRef] [Google Scholar]

76. Abers M.S., Sandvall B.P., Sampath R., Zuno C., Uy N., Yu V.L., Stager C.E., Musher D.M. Postobstructive pneumonia: An underdescribed syndrome. Clin. Infect. Dis. 2016;62:957–961. doi: 10.1093/cid/civ1212. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Rolston K.V. Postobstructive pneumonia in cancer patients. Clin. Infect. Dis. 2016;63:707–708. doi: 10.1093/cid/ciw368. [PubMed] [CrossRef] [Google Scholar]

78. Kalkat M.S., Bonser R.S. Obstructive pneumonia: An indication for surgery in mega aorta syndrome. Ann. Thorac. Surg. 2003;75:1313–1315. doi: 10.1016/S0003-4975(02)04566-6. [PubMed] [CrossRef] [Google Scholar]

79. Rolston K.V.I., Nesher L. Post-Obstructive pneumonia in patients with cancer: A review. Infect. Dis. Ther. 2018;7:29–38. doi: 10.1007/s40121-018-0185-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Seo S.K., Liu C., Dadwal S.S. Infectious disease complications in patients with cancer. Crit. Care Clin. 2021;37:69–84. doi: 10.1016/j.ccc.2020.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Battaglia C.C., Hale K. Hospital-Acquired infections in critically III patients with cancer. J. Intensive Care Med. 2018;34:523–536. doi: 10.1177/0885066618788019. [PubMed] [CrossRef] [Google Scholar]

82. Bahu R., Chaftari A.-M., Hachem R.Y., Ahrar K., Shomali W., El Zakhem A., Jiang Y., AlShuaibi M., Raad I.I. Nephrostomy tube related pyelonephritis in patients with cancer: Epidemiology, infection rate and risk factors. J. Urol. 2013;189:130–135. doi: 10.1016/j.juro.2012.08.094. [PubMed] [CrossRef] [Google Scholar]

83. Pu L.Z.C.T., Singh R., Loong C.K., de Moura E.G.H. Malignant Biliary Obstruction: Evidence for Best Practice. Gastroenterol. Res. Pract. 2016;2016:3296801–3296807. doi: 10.1155/2016/3296801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Cassani L., Lee J.H. Management of malignant distal biliary obstruction. Gastrointest. Interv. 2015;4:15–20. doi: 10.1016/j.gii.2015.02.001. [CrossRef] [Google Scholar]

85. Shi S., Xia W., Guo H., Kong H., Zheng S. Unique characteristics of pyogenic liver abscesses of biliary origin. Surgery. 2016;159:1316–1324. doi: 10.1016/j.surg.2015.11.012. [PubMed] [CrossRef] [Google Scholar]

86. Rolston K.V.I., Dholakia N., Rodriguez S., Rubenstein E.B. Nature and outcome of febrile episodes in patients with pancreatic and hepatobiliary cancer. Support. Care Cancer. 1995;3:414–417. doi: 10.1007/BF00364982. [PubMed] [CrossRef] [Google Scholar]

87. Xu C., Lv P.-H., Huang X.-E., Wang S.-X., Sun L., Wang F.-A. Analysis of different ways of drainage for obstructive jaundice caused by hilar cholangiocarcinoma. Asian Pac. J. Cancer Prev. 2014;15:5617–5620. doi: 10.7314/APJCP.2014.15.14.5617. [PubMed] [CrossRef] [Google Scholar]

88. Aljahdli E.S. Management of distal malignant biliary obstruction. Saudi J. Gastroenterol. 2018;24:71–72. doi: 10.4103/sjg.SJG_611_17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Avritscher E.B.C., Cooksley C.D., Rolston K.V., Swint J.M., Delclos G.L., Franzini L., Swisher S.G., Walsh G.L., Mansfield P.F., Elting L.S. Serious postoperative infections following resection of common solid tumors: Outcomes, costs, and impact of hospital surgical volume. Support. Care Cancer. 2014;22:527–535. doi: 10.1007/s00520-013-2006-1. [PubMed] [CrossRef] [Google Scholar]

90. Yang K., Zang Z.-Y., Niu K.-F., Sun L.-F., Zhang W.-H., Zhang Y.-X., Chen X.-L., Zhou Z.-G., Hu J.-K. The survival benefit and safety of splenectomy for gastric cancer with total gastrectomy: Updated results. Front. Oncol. 2021;10:2786. doi: 10.3389/fonc.2020.568872. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Lee S.S., Morgenstern L., Phillips E.H., Hiatt J.R., Margulies D.R. Splenectomy for splenic metastases: A changing clinical spectrum. Am. Surg. 2000;66:837–840. [PubMed] [Google Scholar]

92. Feola A., Niola M., Conti A., Delbon P., Graziano V., Paternoster M., Della Pietra B. Iatrogenic splenic injury: Review of the literature and medico-legal issues. Open Med. 2016;11:307–315. doi: 10.1515/med-2016-0059. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Di Sabatino A., Carsetti R., Corazza G.R. Post-Splenectomy and hyposplenic states. Lancet. 2011;378:86–97. doi: 10.1016/S0140-6736(10)61493-6. [PubMed] [CrossRef] [Google Scholar]

94. Buzelé R., Barbier L., Sauvanet A., Fantin B. Medical complications following splenectomy. J. Visc. Surg. 2016;153:277–286. doi: 10.1016/j.jviscsurg.2016.04.013. [PubMed] [CrossRef] [Google Scholar]

95. Pawelec G. Immunosenescence: Impact in the young as well as the old? Mech. Ageing Dev. 1999;108:1–7. doi: 10.1016/s0047-6374(99)00010-x. [PubMed] [CrossRef] [Google Scholar]

96. Eşme M., Topeli A., Yavuz B.B.D., Akova M. Infections in the elderly Critically-III patients. Front. Med. 2019;6:118. doi: 10.3389/fmed.2019.00118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Tannou T., Koeberle S., Manckoundia P., Aubry R. Multifactorial immunodeficiency in frail elderly patients: Contributing factors and management. Med. Mal. Infect. 2019;49:167–172. doi: 10.1016/j.medmal.2019.01.012. [PubMed] [CrossRef] [Google Scholar]

98. Lyman G.H., Abella E., Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit. Rev. Oncol. Hematol. 2014;90:190–199. doi: 10.1016/j.critrevonc.2013.12.006. [PubMed] [CrossRef] [Google Scholar]

99. Balducci L., Hardy C.L., Lyman G.H. Hemopoiesis and aging. Cancer Treat. Res. 2005;124:109–134. doi: 10.1007/0-387-23962-6_6. [PubMed] [CrossRef] [Google Scholar]

100. Gay L., Melenotte C., Lakbar I., Mezouar S., Devaux C., Raoult D., Bendiane M.-K., Leone M., Mège J.-L. Sexual dimorphism and gender in infectious diseases. Front. Immunol. 2021;12:698121. doi: 10.3389/fimmu.2021.698121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. García-Gómez E., González-Pedrajo B., Camacho-Arroyo I. Role of Sex Steroid Hormones in Bacterial-Host Interactions. BioMed Res. Int. 2013;2013:928290. doi: 10.1155/2013/928290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Ahmed S.A., Karpuzoglu E., Khan D. Effects of sex steroids on innate and adaptive immunity. In: Klein S.L., Roberts C.W., editors. Sex Hormones and Immunity to Infection. Springer; Berlin/Heidelberg, Germany: 2010. pp. 19–51. [Google Scholar]

103. Fish E.N. The X-files in immunity: Sex-Based differences predispose immune responses. Nat. Rev. Immunol. 2008;8:737–744. doi: 10.1038/nri2394. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Harrington R.D., Hooton T.M. Urinary tract infection risk factors and gender. J. Gend. Specif. Med. 2000;3:27–34. [PubMed] [Google Scholar]

105. Abdel-Rahman O. Impact of sex on chemotherapy toxicity and efficacy among patients with metastatic colorectal cancer: Pooled analysis of 5 randomized trials. Clin. Color. Cancer. 2019;18:110–115.e2. doi: 10.1016/j.clcc.2018.12.006. [PubMed] [CrossRef] [Google Scholar]

106. Fontanella C., Bolzonello S., Lederer B., Aprile G. Management of breast cancer patients with chemotherapy-induced neutropenia or febrile neutropenia. Breast Care. 2014;9:239–245. doi: 10.1159/000366466. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Özdemir B.C., Csajka C., Dotto G.-P., Wagner A.D. Sex differences in efficacy and toxicity of systemic treatments: An undervalued issue in the era of precision oncology. J. Clin. Oncol. 2018;36:2680–2683. doi: 10.1200/JCO.2018.78.3290. [PubMed] [CrossRef] [Google Scholar]

108. Ruzzo A., Graziano F., Galli F., Galli F., Rulli E., Lonardi S., Ronzoni M., Massidda B., Zagonel V., Pella N., et al. Sex-Related Differences in impact on safety of pharmacogenetic profile for colon cancer patients treated with FOLFOX-4 or XELOX adjuvant chemotherapy. Sci. Rep. 2019;9:11527. doi: 10.1038/s41598-019-47627-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Bossi P., Delrio P., Mascheroni A., Zanetti M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: A narrative review. Nutrients. 2021;13:1980. doi: 10.3390/nu13061980. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Chandra R.K. Nutrition, immunity and infection: From basic knowledge of dietary manipulation of immune responses to practical application of ameliorating suffering and improving survival. Proc. Natl. Acad. Sci. USA. 1996;93:14304–14307. doi: 10.1073/pnas.93.25.14304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Triarico S., Rinninella E., Cintoni M., Capozza M.A., Mastrangelo S., Mele M.C., Ruggiero A. Impact of malnutrition on survival and infections among pediatric patients with cancer: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2019;23:1165–1175. [PubMed] [Google Scholar]

112. Falagas M.E., Kompoti M. Obesity and infection. Lancet Infect. Dis. 2006;6:438–446. doi: 10.1016/S1473-3099(06)70523-0. [PubMed] [CrossRef] [Google Scholar]

113. Ghilotti F., Bellocco R., Ye W., Adami H.-O., Lagerros Y.T. Obesity and risk of infections: Results from men and women in the Swedish National March Cohort. Int. J. Epidemiol. 2019;48:1783–1794. doi: 10.1093/ije/dyz129. [PubMed] [CrossRef] [Google Scholar]

114. Huttunen R., Syrjänen J. Obesity and the risk and outcome of infection. Int. J. Obes. 2013;37:333–340. doi: 10.1038/ijo.2012.62. [PubMed] [CrossRef] [Google Scholar]

115. Carey I.M., Critchley J.A., DeWilde S., Harris T., Hosking F.J., Cook D.G. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes Care. 2018;41:513–521. doi: 10.2337/dc17-2131. [PubMed] [CrossRef] [Google Scholar]

116. Berman S.J., Johnson E.W., Nakatsu C., Alkan M., Chen R., LeDuc J. Burden of infection in patients with end-stage renal disease requiring long-term dialysis. Clin. Infect. Dis. 2004;39:1747–1753. doi: 10.1086/424516. [PubMed] [CrossRef] [Google Scholar]

117. Cohen G., Hörl W.H. Immune dysfunction in Uremia—An update. Toxins. 2012;4:962–990. doi: 10.3390/toxins4110962. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Lange P. Chronic obstructive pulmonary disease and risk of infection. Pneumonol. Alergol. Polska. 2009;77:284–288. [PubMed] [Google Scholar]

119. Fragoulis G.E., Sipsas N.V. When rheumatology and infectious disease come together. Ther. Adv. Musculoskelet. Dis. 2019;11:1–3. doi: 10.1177/1759720X19868901. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Hsu C.-Y., Ko C.-H., Wang J.-L., Hsu T.-C., Lin C.-Y. Comparing the burdens of opportunistic infections among patients with systemic rheumatic diseases: A nationally representative cohort study. Arthritis Res. 2019;21:211. doi: 10.1186/s13075-019-1997-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. [PubMed] [CrossRef] [Google Scholar]

122. Fernández J., Gustot T. Management of bacterial infections in cirrhosis. J. Hepatol. 2012;56((Suppl. 1)):S1–S12. doi: 10.1016/S0168-8278(12)60002-6. [PubMed] [CrossRef] [Google Scholar]

123. McCusker C., Warrington R. Primary immunodeficiency. Allergy Asthma Clin. Immunol. 2011;7((Suppl. 1)):S11. doi: 10.1186/1710-1492-7-S1-S11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Okishiro M., Kim S.J., Tsunashima R., Nakayama T., Shimazu K., Shimomura A., Maruyama N., Tamaki Y., Noguchi S. MDM2 SNP309 and TP53 R72P associated with severe and febrile neutropenia in breast cancer patients treated with 5-FU/epirubicin/cyclophosphamide. Breast Cancer Res. Treat. 2012;132:947–953. doi: 10.1007/s10549-011-1637-5. [PubMed] [CrossRef] [Google Scholar]

125. Vulsteke C., Lambrechts D., Dieudonné A., Hatse S., Brouwers B., van Brussel T., Neven P., Belmans A., Schöffski P., Paridaens R., et al. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) Ann. Oncol. 2013;24:1513–1525. doi: 10.1093/annonc/mdt008. [PubMed] [CrossRef] [Google Scholar]

126. McLeod H.L., Sargent D., Marsh S., Green E.M., King C.R., Fuchs C.S., Ramanathan R.K., Williamson S.K., Findlay B.P., Thibodeau S.N., et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: Results from north american gastrointestinal intergroup trial N9741. J. Clin. Oncol. 2010;28:3227–3233. doi: 10.1200/JCO.2009.21.7943. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Cremolini C., Del Re M., Antoniotti C., Lonardi S., Bergamo F., Loupakis F., Borelli B., Marmorino F., Citi V., Cortesi E., et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2017;9:7859–7866. doi: 10.18632/oncotarget.23559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Yamaguchi T., Iwasa S., Shoji H., Honma Y., Takashima A., Kato K., Hamaguchi T., Higuchi K., Boku N. Association between UGT1A1 gene polymorphism and safety and efficacy of irinotecan monotherapy as the third-line treatment for advanced gastric cancer. Gastric Cancer. 2019;22:778–784. doi: 10.1007/s10120-018-00917-5. [PubMed] [CrossRef] [Google Scholar]

129. Wood A.J., Pizzo P.A. Management of fever in patients with cancer and treatment-induced neutropenia. N. Engl. J. Med. 1993;328:1323–1332. doi: 10.1056/NEJM199305063281808. [PubMed] [CrossRef] [Google Scholar]

130. DiNubile M.J. Fever and neutropenia: Still a challenge. Contemp. Intern. Med. 1995;7:35–41. [PubMed] [Google Scholar]

131. Zell J.A., Chang J.C. Neoplastic fever: A neglected paraneoplastic syndrome. Support. Care Cancer. 2005;13:870–877. doi: 10.1007/s00520-005-0825-4. [PubMed] [CrossRef] [Google Scholar]

132. Kasuga I., Makino S., Kiyokawa H., Katoh H., Ebihara Y., Ohyashiki K. Tumor-Related leukocytosis is linked with poor prognosis in patients with lung carcinoma. Cancer. 2001;92:2399–2405. doi: 10.1002/1097-0142(20011101)92:9<2399::AID-CNCR1588>3.0.CO;2-W. [PubMed] [CrossRef] [Google Scholar]

133. Hart P.C., Rajab I.M., Alebraheem M., Potempa L.A. C-Reactive protein and cancer—Diagnostic and therapeutic insights. Front. Immunol. 2020;11:595835. doi: 10.3389/fimmu.2020.595835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Vincenzi B., Fioroni I., Pantano F., Angeletti S., Dicuonzo G., Zoccoli A., Santini D., Tonini G. Procalcitonin as diagnostic marker of infection in solid tumors patients with fever. Sci. Rep. 2016;6:28090. doi: 10.1038/srep28090. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Palmore T.N., Parta M., Cuellar-Rodriguez J., Gea-Banacloche J.C. Infections in the Cancer Patient. In: Vincent T.D. Jr., Theodore S.L., Steven A.R., editors. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Lippincott Williams and Wilkins; Philadelphia, PA, USA: 2011. pp. 1931–1959. [Google Scholar]

136. Gao Y., Shang Q., Li W., Guo W., Stojadinovic A., Mannion C., Man Y.-G., Chen T. Antibiotics for cancer treatment: A double-edged sword. J. Cancer. 2020;11:5135–5149. doi: 10.7150/jca.47470. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Hecker M.T., Aron D.C., Patel N.P., Lehmann M.K., Donskey C.J. Unnecessary use of antimicrobials in hospitalized patients: Current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch. Intern. Med. 2003;163:972–978. doi: 10.1001/archinte.163.8.972. [PubMed] [CrossRef] [Google Scholar]

138. Fridkin S., Baggs J., Fagan R., Magill S., Pollack L.A., Malpiedi P., Slayton R., Khader K., Rubin M.A., Jones M., et al. Vital signs: Improving antibiotic use among hospitalized patients. MMWR. Morb. Mortal. Wkly. Rep. 2014;63:194–200. [PMC free article] [PubMed] [Google Scholar]

139. Dellit T.H., Owens R.C., McGowan J.E., Jr., Gerding D.N., Weinstein R.A., Burke J.P., Huskins W.C., Paterson D.L., Fishman N.O., Carpenter C.F., et al. Infectious diseases society of america and the society for healthcare epidemiology of america guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007;44:159–177. doi: 10.1086/510393. [PubMed] [CrossRef] [Google Scholar]

140. Islas-Muñoz B., Volkow-Fernández P., Ibanes-Gutiérrez C., Villamar-Ramírez A., Vilar-Compte D., Cornejo-Juárez P. Bloodstream infections in cancer patients. Risk factors associated with mortality. Int. J. Infect. Dis. 2018;71:59–64. doi: 10.1016/j.ijid.2018.03.022. [PubMed] [CrossRef] [Google Scholar]

141. Baur D., Gladstone B.P., Burkert F., Carrara E., Foschi F., Döbele S., Tacconelli E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017;17:990–1001. doi: 10.1016/S1473-3099(17)30325-0. [PubMed] [CrossRef] [Google Scholar]

142. Nathwani D., Varghese D., Stephens J., Ansari W., Martin S., Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob. Resist. Infect. Control. 2019;8:35. doi: 10.1186/s13756-019-0471-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Ramos-Casals M., Brahmer J.R., Callahan M.K., Flores-Chávez A., Keegan N., Khamashta M.A., Lambotte O., Mariette X., Prat A., Suárez-Almazor M.E. Immune-Related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 2020;6:38. doi: 10.1038/s41572-020-0160-6. [PubMed] [CrossRef] [Google Scholar]

144. Del Castillo M., Romero F.A., Argüello E., Kyi C., Postow M.A., Redelman-Sidi G. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 2016;63:1490–1493. doi: 10.1093/cid/ciw539. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Elkrief A., DeRosa L., Kroemer G., Zitvogel L., Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: A new independent prognostic factor? Ann. Oncol. 2019;30:1572–1579. doi: 10.1093/annonc/mdz206. [PubMed] [CrossRef] [Google Scholar]

146. Freifeld A.G., Bow E.J., Sepkowitz K.A., Boeckh M.J., Ito J.I., Mullen C.A., Raad I.I., Rolston K.V., Young J.-A.H., Wingard J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011;52:e56–e93. doi: 10.1093/cid/cir073. [PubMed] [CrossRef] [Google Scholar]

147. Carmona-Bayonas A., Jiménez-Fonseca P., Echaburu J.V., Cánovas M.S., De La Peña F.A. The time has come for new models in febrile neutropenia: A practical demonstration of the inadequacy of the MASCC score. Clin. Transl. Oncol. 2017;19:1084–1090. doi: 10.1007/s12094-017-1644-z. [PubMed] [CrossRef] [Google Scholar]

148. Peyrony O., Gerlier C., Barla I., Ellouze S., Legay L., Azoulay E., Chevret S., Fontaine J.-P. Antibiotic prescribing and outcomes in cancer patients with febrile neutropenia in the emergency department. PLoS ONE. 2020;15:e0229828. doi: 10.1371/journal.pone.0229828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Elting L.S., Lu C., Escalante C.P., Giordano S.H., Trent J.C., Cooksley C., Avritscher E.B., Shih Y.-C.T., Ensor J., Bekele B.N., et al. Outcomes and cost of outpatient or inpatient management of 712 patients with febrile neutropenia. J. Clin. Oncol. 2008;26:606–611. doi: 10.1200/JCO.2007.13.8222. [PubMed] [CrossRef] [Google Scholar]

150. AJMC Guidelines in the Management of Febrile Neutropenia for Clinical Practice. [(accessed on 20 November 2021)]. Available online: //www.ajmc.com/view/guidelines-in-the-management-of-febrile-neutropenia-for-clinical-practice

151. Taplitz R.A., Kennedy E.B., Bow E.J., Crews J., Gleason C., Hawley D.K., Langston A.A., Nastoupil L.J., Rajotte M., Rolston K., et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American society of clinical oncology and infectious diseases society of america clinical practice guideline update. J. Clin. Oncol. 2018;36:1443–1453. doi: 10.1200/JCO.2017.77.6211. [PubMed] [CrossRef] [Google Scholar]

152. Anatoliotaki M., Valatas V., Mantadakis E., Apostolakou H., Mavroudis D., Georgoulias V., Rolston K.V., Kontoyiannis D.P., Galanakis E., Samonis G. Bloodstream infections in patients with solid tumors: Associated factors, microbial spectrum and outcome. Infection. 2004;32:65–71. doi: 10.1007/s15010-004-3049-5. [PubMed] [CrossRef] [Google Scholar]

153. Marín M., Gudiol C., Garcia-Vidal C., Ardanuy C., Carratala J. Bloodstream Infections in patients with solid tumors: Epidemiology, antibiotic therapy, and outcomes in 528 episodes in a single cancer center. Medicine. 2014;93:143–149. doi: 10.1097/MD.0000000000000026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Seifert H., Cornely O., Seggewiss K., Decker M., Stefanik D., Wisplinghoff H., Fätkenheuer G. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J. Clin. Microbiol. 2003;41:118–123. doi: 10.1128/JCM.41.1.118-123.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Mermel L.A., Allon M., Bouza E., Craven D.E., Flynn P., O’Grady N.P., Raad I.I., Rijnders B.J.A., Sherertz R.J., Warren D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of america. Clin. Infect. Dis. 2009;49:1–45. doi: 10.1086/599376. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Cantón-Bulnes M.L., Garnacho-Montero J. Practical approach to the management of catheter-related bloodstream infection. Rev. Esp. Quimioter. 2019;32:38–41. [PMC free article] [PubMed] [Google Scholar]

157. Muff S., Tabah A., Que Y.-A., Timsit J.-F., Mermel L., Harbarth S., Buetti N. Short-Course versus long-course systemic antibiotic treatment for uncomplicated intravascular catheter-related bloodstream infections due to gram-negative bacteria, enterococci or coagulase-negative staphylococci: A systematic review. Infect. Dis. Ther. 2021;10:1591–1605. doi: 10.1007/s40121-021-00464-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Chaves F., Garnacho-Montero J., Del Pozo J.L., Bouza E., Capdevila J., de Cueto M., Domínguez M., Esteban J., Fernández-Hidalgo N., Sampedro M.F., et al. Diagnosis and treatment of catheter-related bloodstream infection: Clinical guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) Med. Intensiv. 2018;42:5–36. doi: 10.1016/j.medin.2017.09.012. [PubMed] [CrossRef] [Google Scholar]

159. Norris L.B., Kablaoui F., Brilhart M.K., Bookstaver P.B. Systematic review of antimicrobial lock therapy for prevention of central-line-associated bloodstream infections in adult and pediatric cancer patients. Int. J. Antimicrob. Agents. 2017;50:308–317. doi: 10.1016/j.ijantimicag.2017.06.013. [PubMed] [CrossRef] [Google Scholar]

160. Pliakos E.E., Andreatos N., Ziakas P., Mylonakis E. The cost-effectiveness of antimicrobial lock solutions for the prevention of central line–associated bloodstream infections. Clin. Infect. Dis. 2019;68:419–425. doi: 10.1093/cid/ciy511. [PubMed] [CrossRef] [Google Scholar]

161. Robinson J.L., Tawfik G., Saxinger L., Stang L., Etches W., Lee B. Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J. Antimicrob. Chemother. 2005;56:951–953. doi: 10.1093/jac/dki311. [PubMed] [CrossRef] [Google Scholar]

162. Luther M.K., Mermel L.A., Laplante K.L. Comparison of linezolid and vancomycin lock solutions with and without heparin against biofilm-producing bacteria. Am. J. Health Pharm. 2017;74:e193–e201. doi: 10.2146/ajhp150804. [PubMed] [CrossRef] [Google Scholar]

163. Del Pozo J.L. Role of antibiotic lock therapy for the treatment of catheter-related bloodstream infections. Int. J. Artif. Organs. 2009;32:678–688. doi: 10.1177/039139880903200918. [PubMed] [CrossRef] [Google Scholar]

164. Bookstaver P.B., Rokas K.E.E., Norris L.B., Edwards J.M., Sherertz R.J. Stability and compatibility of antimicrobial lock solutions. Am. J. Health Syst. Pharm. 2013;70:2185–2198. doi: 10.2146/ajhp120119. [PubMed] [CrossRef] [Google Scholar]

165. LaPlante K.L., Mermel L.A. In Vitro activity of daptomycin and vancomycin lock solutions on staphylococcal biofilms in a central venous catheter model. Nephrol. Dial. Transpl. 2007;22:2239–2246. doi: 10.1093/ndt/gfm141. [PubMed] [CrossRef] [Google Scholar]

166. Krishnasami Z., Carlton D., Bimbo L., Taylor M.E., Balkovetz D.F., Barker J., Allon M. Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int. 2002;61:1136–1142. doi: 10.1046/j.1523-1755.2002.00201.x. [PubMed] [CrossRef] [Google Scholar]

167. Vercaigne L.M., Sitar D.S., Penner S.B., Bernstein K., Wang G.Q., Burczynski F. Antibiotic-Heparin lock: In Vitro antibiotic stability combined with heparin in a central venous catheter. Pharmacotherapy. 2000;20:394–399. doi: 10.1592/phco.20.5.394.35063. [PubMed] [CrossRef] [Google Scholar]

168. Justo J.A., Bookstaver P.B. Antibiotic lock therapy: Review of technique and logistical challenges. Infect. Drug Resist. 2014;7:343–363. doi: 10.2147/idr.s51388. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Rijnders B.J., Van Wijngaerden E., Vandecasteele S.J., Stas M., Peetermans W.E. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: Randomized, placebo-controlled trial. J. Antimicrob. Chemother. 2005;55:90–94. doi: 10.1093/jac/dkh488. [PubMed] [CrossRef] [Google Scholar]

170. Lee J.-Y., Ko K.S., Peck K.R., Oh W.S., Song J.-H. In Vitro evaluation of the antibiotic lock technique (ALT) for the treatment of catheter-related infections caused by staphylococci. J. Antimicrob. Chemother. 2006;57:1110–1115. doi: 10.1093/jac/dkl098. [PubMed] [CrossRef] [Google Scholar]

171. Droste J.C., Jeraj H.A., Macdonald A., Farrington K. Stability and in vitro efficacy of antibiotic-heparin lock solutions potentially useful for treatment of central venous catheter-related sepsis. J. Antimicrob. Chemother. 2003;51:849–855. doi: 10.1093/jac/dkg179. [PubMed] [CrossRef] [Google Scholar]

172. Lee M.Y., Ko K.S., Song J.-H., Peck K.R. In Vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemother. 2007;60:782–787. doi: 10.1093/jac/dkm295. [PubMed] [CrossRef] [Google Scholar]

173. Onland W., Shin C.E., Fustar S., Rushing T., Wong W.-Y. Ethanol-Lock technique for persistent bacteremia of long-term intravascular devices in pediatric patients. Arch. Pediatr. Adolesc. Med. 2006;160:1049–1053. doi: 10.1001/archpedi.160.10.1049. [PubMed] [CrossRef] [Google Scholar]

174. EMC Ampicillin 500 mg powder for solution for injection—Summary of Product Characteristics (SPC) [(accessed on 12 November 2021)]. Available online: //www.medicines.org.uk/emc/product/12892/smpc#gref

175. Vila-Corcoles A., Ochoa-Gondar O., Rodriguez-Blanco T., Raga-Luria X., Gomez-Bertomeu F. Epidemiology of community-acquired pneumonia in older adults: A population-based study. Respir. Med. 2009;103:309–316. doi: 10.1016/j.rmed.2008.08.006. [PubMed] [CrossRef] [Google Scholar]

176. Parakh A., Krishnamurthy S., Bhattacharya M. Ertapenem. Kathmandu Univ. Med. J. (KUMJ) 2009;7:454–460. doi: 10.3126/kumj.v7i4.2774. [PubMed] [CrossRef] [Google Scholar]

177. Kalil A.C., Metersky M.L., Klompas M., Muscedere J., Sweeney D.A., Palmer L.B., Napolitano L.M., O’Grady N.P., Bartlett J.G., Carratala J., et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of america and the american thoracic society. Clin. Infect. Dis. 2016;63:e61–e111. doi: 10.1093/cid/ciw353. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Metlay J.P., Waterer G.W., Long A.C., Anzueto A., Brozek J., Crothers K., Cooley L.A., Dean N.C., Fine M.J., Flanders S.A., et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the american thoracic society and infectious diseases society of America. Am. J. Respir. Crit. Care Med. 2019;200:e45–e67. doi: 10.1164/rccm.201908-1581ST. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Hanson K.E., Azar M.M., Banerjee R., Chou A., Colgrove R.C., Ginocchio C.C., Hayden M.K., Holodiny M., Jain S., Koo S., et al. Molecular testing for acute respiratory tract infections: Clinical and diagnostic recommendations from the IDSA’s diagnostics committee. Clin. Infect. Dis. 2020;71:2744–2751. doi: 10.1093/cid/ciaa508. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Sartelli M., Chichom-Mefire A., Labricciosa F.M., Hardcastle T., Abu-Zidan F.M., Adesunkanmi A.K., Ansaloni L., Bala M., Balogh Z.J., Beltrán M.A., et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017;12:29. doi: 10.1186/s13017-017-0141-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Solomkin J.S., Mazuski J.E., Bradley J.S., Rodvold K.A., Goldstein E.J., Baron E.J., O’Neill P.J., Chow A.W., Dellinger E.P., Eachempati S.R., et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the surgical infection society and the infectious diseases society of america. Clin. Infect. Dis. 2010;50:133–164. doi: 10.1086/649554. [PubMed] [CrossRef] [Google Scholar]

182. Guevara E.A.Y., Aitken S.L., Olvera A.V., Carlin L., Fernandes K.E., Bhatti M.M., Garey K.W., Adachi J., Okhuysen P.C. Clostridioides difficile infection in cancer and immunocompromised patients: Relevance of a two-step diagnostic algorithm and infecting ribotypes on clinical outcomes. Clin. Infect. Dis. 2020;72:e460–e465. doi: 10.1093/cid/ciaa1184. [PubMed] [CrossRef] [Google Scholar]

183. Abughanimeh O., Qasrawi A., Kaddourah O., Al Momani L., Abu Ghanimeh M. Clostridium difficileinfection in oncology patients: Epidemiology, pathophysiology, risk factors, diagnosis, and treatment. Hosp. Pract. 2018;46:266–277. doi: 10.1080/21548331.2018.1533673. [PubMed] [CrossRef] [Google Scholar]

184. Johnson S., Lavergne V., Skinner A.M., Gonzales-Luna A.J., Garey K.W., Kelly C.P., Wilcox M.H. Clinical practice guideline by the infectious diseases society of america (idsa) and society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults. Clin. Infect. Dis. 2021;73:e1029–e1044. doi: 10.1093/cid/ciab549. [PubMed] [CrossRef] [Google Scholar]

185. Kirkpatrick I.D.C., Greenberg H.M. Gastrointestinal complications in the neutropenic patient: Characterization and differentiation with abdominal CT. Radiology. 2003;226:668–674. doi: 10.1148/radiol.2263011932. [PubMed] [CrossRef] [Google Scholar]

186. Song H.K., Kreisel D., Canter R., Krupnick A.S., Stadtmauer E.A., Buzby G. Changing presentation and management of neutropenic enterocolitis. Arch. Surg. 1998;133:979–982. doi: 10.1001/archsurg.133.9.979. [PubMed] [CrossRef] [Google Scholar]

187. Tigabu A., Ferede W., Belay G., Gelaw B. Prevalence of asymptomatic bacteriuria and antibiotic susceptibility patterns of bacterial isolates among cancer patients and healthy blood donors at the University of Gondar Specialized Hospital. Int. J. Microbiol. 2020;2020:3091564. doi: 10.1155/2020/3091564. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Shrestha G., Wei X., Hann K., Soe K., Satyanarayana S., Siwakoti B., Bastakoti S., Mulmi R., Rana K., Lamichhane N. Bacterial profile and antibiotic resistance among cancer patients with urinary tract infection in a national tertiary cancer hospital of Nepal. Trop. Med. Infect. Dis. 2021;6:49. doi: 10.3390/tropicalmed6020049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Parikh P., Bhat V. Urinary tract infection in cancer patients in a tertiary cancer setting in India: Microbial spectrum and antibiotic susceptibility pattern. Antimicrob. Resist. Infect. Control. 2015;4:221. doi: 10.1186/2047-2994-4-S1-P221. [CrossRef] [Google Scholar]

190. Khaparkuntikar M., Siddiqui N., Bhirud P. Urinary tract infection in cancer patients at Government Cancer Hospital Aurangabad, India. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2259–2263. doi: 10.20546/ijcmas.2017.605.251. [CrossRef] [Google Scholar]

191. Bonkat G., Bartoletti R., Bruyère F., Cai T., Geerlings S.E., Köves B., Schubert S., Wagenlehner F. EAU Guidelines on Urological Infections. EAU Guidelines Office; Arnhem, The Netherlands: 2020. [Google Scholar]

192. Nicolle L. Complicated urinary tract infection in adults. Can. J. Infect. Dis. Med. Microbiol. 2005;16:349–360. doi: 10.1155/2005/385768. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. Lopes M.S.M., Machado L.M., Silva P.A.I.A., Uchiyama A.A.T., Yen C.T., Ricardo E.D., Mutao T.S., Pimenta J.R., Shimba D.S., Hanriot R.M., et al. Antibiotics, cancer risk and oncologic treatment efficacy: A practical review of the literature. Ecancermedicalscience. 2020;14:1106. [PMC free article] [PubMed] [Google Scholar]

194. Shui L., Yang X., Li J., Yi C., Sun Q., Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front. Immunol. 2020;10:2989. doi: 10.3389/fimmu.2019.02989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Ma W., Mao Q., Xia W., Dong G., Yu C., Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol. 2019;10:1050. doi: 10.3389/fmicb.2019.01050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Reed J.P., Devkota S., Figlin R.A. Gut microbiome, antibiotic use, and immunotherapy responsiveness in cancer. Ann. Transl. Med. 2019;7:S309. doi: 10.21037/atm.2019.10.27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Matson V., Fessler J., Bao R., Chongsuwat T., Zha Y., Alegre M.-L., Luke J.J., Gajewski T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108. doi: 10.1126/science.aao3290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Routy B., Le Chatelier E., DeRosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706. [PubMed] [CrossRef] [Google Scholar]

200. Vétizou M., Pitt J.M., Daillère R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P.M., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi: 10.1126/science.aad1329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Sivan A., Corrales L., Hubert N., Williams J.B., Aquino-Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.-L., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–1089. doi: 10.1126/science.aac4255. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Chaput N., Lepage P., Coutzac C., Soularue E., Le Roux K., Monot C., Boselli L., Routier E., Cassard L., Collins M., et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017;28:1368–1379. doi: 10.1093/annonc/mdx108. [PubMed] [CrossRef] [Google Scholar]

203. Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist. 2020;25:55–63. doi: 10.1634/theoncologist.2019-0160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Mohiuddin J.J., Chu B., Facciabene A., Poirier K., Wang X., Doucette A., Zheng C., Xu W., Anstadt E.J., Amaravadi R.K., et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J. Natl. Cancer Inst. 2020;113:162–170. doi: 10.1093/jnci/djaa057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Derosa L., Hellmann M., Spaziano M., Halpenny D., Fidelle M., Rizvi H., Long N., Plodkowski A., Arbour K., Chaft J., et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018;29:1437–1444. doi: 10.1093/annonc/mdy103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Rubio X.M., Chara L., Sotelo-Lezama M., Castro R.L., Rubio-Martínez J., Velastegui A., Olier-Garate C., Falagan S., Gómez-Barreda I., Bautista-Sanz P., et al. MA10.01 antibiotic use and PD-1 inhibitors: Shorter survival in lung cancer, especially when given intravenously. Type of infection also matters. J. Thorac. Oncol. 2018;13:S389. doi: 10.1016/j.jtho.2018.08.395. [CrossRef] [Google Scholar]

207. Galli G., Triulzi T., Proto C., Signorelli D., Imbimbo M., Poggi M., Fucà G., Ganzinelli M., Vitali M., Palmieri D., et al. Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer. 2019;132:72–78. doi: 10.1016/j.lungcan.2019.04.008. [PubMed] [CrossRef] [Google Scholar]

208. Geum M., Kim C., Kang J., Choi J., Kim J., Son E., Lim S., Rhie S. Broad-Spectrum antibiotic regimen affects survival in patients receiving nivolumab for non-small cell lung cancer. Pharmaceuticals. 2021;14:445. doi: 10.3390/ph14050445. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Lalani A.-K.A., Xie W., Braun D.A., Kaymakcalan M., Bossé D., Steinharter J.A., Martini D., Simantov R., Lin X., Wei X.X., et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur. Urol. Oncol. 2020;3:372–381. doi: 10.1016/j.euo.2019.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Huang X.-Z., Gao P., Song Y.-X., Xu Y., Sun J.-X., Chen X.-W., Zhao J.-H., Wang Z.-N. Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: A pooled analysis of 2740 cancer patients. OncoImmunology. 2019;8:e1665973. doi: 10.1080/2162402X.2019.1665973. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Lurienne L., Cervesi J., Duhalde L., de Gunzburg J., Andremont A., Zalcman G., Buffet R., Bandinelli P.-A. NSCLC immunotherapy efficacy and antibiotic use: A systematic review and meta-analysis. J. Thorac. Oncol. 2020;15:1147–1159. doi: 10.1016/j.jtho.2020.03.002. [PubMed] [CrossRef] [Google Scholar]

212. Wilson B.E., Routy B., Nagrial A., Chin V.T. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: A systematic review and meta-analysis of observational studies. Cancer Immunol. Immunother. 2020;69:343–354. doi: 10.1007/s00262-019-02453-2. [PubMed] [CrossRef] [Google Scholar]

213. Uribe-Herranz M., Rafail S., Beghi S., Gil-De-Gómez L., Verginadis I., Bittinger K., Pustylnikov S., Pierini S., Perales-Linares R., Blair I.A., et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Investig. 2020;130:466–479. doi: 10.1172/JCI124332. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Yang K., Hou Y., Zhang Y., Liang H., Sharma A., Zheng W., Wang L., Torres R., Tatebe K., Chmura S.J., et al. Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. 2021;218 doi: 10.1084/jem.20201915. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Nenclares P., Bhide S.A., Sandoval-Insausti H., Pialat P., Gunn L., Melcher A., Newbold K., Nutting C.M., Harrington K.J. Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. Eur. J. Cancer. 2020;131:9–15. doi: 10.1016/j.ejca.2020.02.047. [PubMed] [CrossRef] [Google Scholar]

216. Corty R.W., Langworthy B.W., Fine J.P., Buse J.B., Sanoff H.K., Lund J.L. Antibacterial Use Is Associated with an Increased Risk of Hematologic and Gastrointestinal Adverse Events in Patients Treated with Gemcitabine for Stage IV Pancreatic Cancer. Oncologist. 2020;25:579–584. doi: 10.1634/theoncologist.2019-0570. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Lee N., Kim W.-U. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 2017;49:e340. doi: 10.1038/emm.2017.36. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Page 2

Selected chemotherapy regimens with a significant risk of febrile neutropenia.

Tumor TypeChemotherapy RegimenRisk of FN (%)Reference
Breast cancerAC (Doxorubicin/Cyclophosphamide)7–13 *Truong et al. [13]
AC⟶D (Doxorubicin/Cyclophosphamide⟶Docetaxel)25Perez et al. [14]
TAC (Docetaxel/Doxorubicin/Cyclophosphamide)22Von Minckwitz et al. [15]
TC (Docetaxel/Cyclophosphamide)70Kosaka et al. [16]
TCH (Docetaxel/Carboplatin/Trastuzumab)41Gilbar et al. [17]
Docetaxel17Marty et al. [18]
Bladder cancerMVAC (Methotrexate/Vinblastine/Doxorubicin/Cisplatin)26Sternberg et al. [19]
Cervical cancerCisplatin/Paclitaxel28Rose et al. [20]
Cisplatin/Topotecan18Long et al. [21]
Gastric cancerDCF (Docetaxel/Cisplatin/5-FU) †29Van Cutsem et al. [22]
TCF (Docetaxel/Cisplatin/5-FU) ‡41Roth et al. [23]
ECF (Epirubicin/Cisplatin/5-FU)13–18Roth et al. [23],
Cunningham et al. [24]
ECX (Epirubicin/Cisplatin/Capecitabine)11Cunningham et al. [24]
Germ cell tumorsBEP (Bleomycin/Etoposide/Cisplatin)13Fossa et al. [25]
EP (Etoposide/Cisplatin)10Motzer et al. [26]
VIP (Etoposide/Ifosfamide/Cisplatin)15Fujiwara et al. [27]
VeIP (Vinblastine/Etoposide/Cisplatin)67Miller et al. [28]
TIP (Paclitaxel/Ifosfamide/Cisplatin)48Kondagunta et al. [29]
HNSCCTPF (Docetaxel/Cisplatin/5-FU)11Pointreau et al. [30]
NSCLCCisplatin/Paclitaxel16Schiller et al. [31]
Cisplatin/Vinorelbine22Pujol et al. [32]
Cisplatin/Docetaxel5–11Fossella et al. [33],
Schiller et al. [31]
Cisplatin/Etoposide54 §
12 ¶
Font et al. [34]
Cardenal et al. [35]
Docetaxel/Carboplatin26Millward et al. [36]
Ovarian cancerTopotecan42Swisher et al. [37]
Docetaxel33Verschraegen et al. [38]
Paclitaxel22Omura et al. [39]
Pancreatic cancerFOLFIRINOX (5-FU/Leucovorin/Oxaliplatin/Irinotecan)17Hosein et al. [40]
SCLCEtoposide/Carboplatin14Yilmaz et al. [41]
Topotecan28Von Pawel et al. [42]
ICE (Ifosfamide/Carboplatin/Etoposide)24Lorigan et al. [43]
CAV (Cyclophosphamide/Doxorubicin/Vincristine)14White et al. [44]
Soft tissue sarcomaMAID (Mesna/Doxorubicin/Ifosfamide/Dacarbazin)58Binh Nguyen et al. [45]
Ifosfamide18 #, 20 ##Lorigan et al. [46]

Última postagem

Tag