What is the most important consideration for endurance athletes striving for optimal athletic performance?

1. Behind USAT and Ironman’s Efforts to Grow the Sport. [(accessed on 25 May 2019)];2017 Mar; Available online: https://www.triathlete.com/2017/03/lifestyle/behind-usat-ironmans-efforts-grow-sport_299133

2. Shilton A. Let’s Try a Triathlon—The New York Times. [(accessed on 2 April 2019)]; Available online: https://www.nytimes.com/guides/well/triathlon-training

3. Miller J.A. The Running Bubble Has Popped. (You Couldn’t Hear It in New York.)—The New York Times. [(accessed on 2 April 2019)]; Available online: https://www.nytimes.com/2017/11/05/sports/ny-marathon-running.html

4. Costa R.J.S., Hoffman M.D., Stellingwerff T. Considerations for Ultra-Endurance Activities: Part 1—Nutrition. Res. Sports Med. 2019;27:166–181. doi: 10.1080/15438627.2018.1502188. [PubMed] [CrossRef] [Google Scholar]

5. Nikolaidis P.T., Veniamakis E., Rosemann T., Knechtle B. Nutrition in Ultra-Endurance: State of the Art. Nutrients. 2018;10:1995. doi: 10.3390/nu10121995. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Ebell M.H., Siwek J., Weiss B.D., Woolf S.H., Susman J., Ewigman B., Bowman M. Strength of Recommendation Taxonomy (SORT): A Patient-Centered Approach to Grading Evidence in the Medical Literature. AFP. 2004;69:548. doi: 10.3122/jabfm.17.1.59. [PubMed] [CrossRef] [Google Scholar]

7. U.S. Department of Health & Human Services, Agency for Healthcare Research and Quality Clinical Guidelines and Recommendations. [(accessed on 25 May 2019)]; Available online: https://www.ahrq.gov/professionals/clinicians-providers/guidelines-recommendations/index.html

8. Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A.A., Arent S.M., et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Thomas D.T., Erdman K.A., Burke L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016;116:501–528. doi: 10.1016/j.jand.2015.12.006. [PubMed] [CrossRef] [Google Scholar]

10. Spriet L.L. New Insights into the Interaction of Carbohydrate and Fat Metabolism during Exercise. Sports Med. 2014;44(Suppl. 1):S87–S96. doi: 10.1007/s40279-014-0154-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Jeukendrup A.E., Jentjens R.L.P.G., Moseley L. Nutritional Considerations in Triathlon. Sports Med. 2005;35:163–181. doi: 10.2165/00007256-200535020-00005. [PubMed] [CrossRef] [Google Scholar]

12. Getzin A.R., Milner C., Harkins M. Fueling the Triathlete: Evidence-Based Practical Advice for Athletes of All Levels. Curr. Sports Med. Rep. 2017;16:240–246. doi: 10.1249/JSR.0000000000000386. [PubMed] [CrossRef] [Google Scholar]

13. Noakes T.D. Physiological Models to Understand Exercise Fatigue and the Adaptations That Predict or Enhance Athletic Performance. Scand. J. Med. Sci. Sports. 2000;10:123–145. doi: 10.1034/j.1600-0838.2000.010003123.x. [PubMed] [CrossRef] [Google Scholar]

14. Burke L.M., Hawley J.A., Wong S.H.S., Jeukendrup A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011;29(Suppl. 1):S17–S27. doi: 10.1080/02640414.2011.585473. [PubMed] [CrossRef] [Google Scholar]

15. Bergström J., Hermansen L., Hultman E., Saltin B. Diet, Muscle Glycogen and Physical Performance. Acta Physiol. Scand. 1967;71:140–150. doi: 10.1111/j.1748-1716.1967.tb03720.x. [PubMed] [CrossRef] [Google Scholar]

16. Bussau V.A., Fairchild T.J., Rao A., Steele P., Fournier P.A. Carbohydrate Loading in Human Muscle: An Improved 1 Day Protocol. Eur. J. Appl. Physiol. 2002;87:290–295. doi: 10.1007/s00421-002-0621-5. [PubMed] [CrossRef] [Google Scholar]

17. Jeukendrup A.E., Moseley L., Mainwaring G.I., Samuels S., Perry S., Mann C.H. Exogenous Carbohydrate Oxidation during Ultraendurance Exercise. J. Appl. Physiol. 2006;100:1134–1141. doi: 10.1152/japplphysiol.00981.2004. [PubMed] [CrossRef] [Google Scholar]

18. Jeukendrup A. A Step Towards Personalized Sports Nutrition: Carbohydrate Intake During Exercise. Sports Med. 2014;44(Suppl. 1):25–33. doi: 10.1007/s40279-014-0148-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Getzin A.R., Milner C., LaFace K.M. Nutrition Update for the Ultraendurance Athlete. Curr. Sports Med. Rep. 2011;10:330–339. doi: 10.1249/JSR.0b013e318237fcdf. [PubMed] [CrossRef] [Google Scholar]

20. Hansen A.K., Fischer C.P., Plomgaard P., Andersen J.L., Saltin B., Pedersen B.K. Skeletal Muscle Adaptation: Training Twice Every Second Day vs. Training Once Daily. J. Appl. Physiol. 2005;98:93–99. doi: 10.1152/japplphysiol.00163.2004. [PubMed] [CrossRef] [Google Scholar]

21. Silva T.d.A.e., de Souza M.E.D.C.A., de Amorim J.F., Stathis C.G., Leandro C.G., Lima-Silva A.E. Can Carbohydrate Mouth Rinse Improve Performance during Exercise? A Systematic Review. Nutrients. 2013;6:1–10. doi: 10.3390/nu6010001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Jeukendrup A.E., Chambers E.S. Oral Carbohydrate Sensing and Exercise Performance. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:447–451. doi: 10.1097/MCO.0b013e328339de83. [PubMed] [CrossRef] [Google Scholar]

23. Cox G.R., Clark S.A., Cox A.J., Halson S.L., Hargreaves M., Hawley J.A., Jeacocke N., Snow R.J., Yeo W.K., Burke L.M. Daily Training with High Carbohydrate Availability Increases Exogenous Carbohydrate Oxidation during Endurance Cycling. J. Appl. Physiol. 2010;109:126–134. doi: 10.1152/japplphysiol.00950.2009. [PubMed] [CrossRef] [Google Scholar]

24. Jeukendrup A., Brouns F., Wagenmakers A.J., Saris W.H. Carbohydrate-Electrolyte Feedings Improve 1 h Time Trial Cycling Performance. Int. J. Sports Med. 1997;18:125–129. doi: 10.1055/s-2007-972607. [PubMed] [CrossRef] [Google Scholar]

25. Carter J.M., Jeukendrup A.E., Mann C.H., Jones D.A. The Effect of Glucose Infusion on Glucose Kinetics during a 1-h Time Trial. Med. Sci. Sports Exerc. 2004;36:1543–1550. doi: 10.1249/01.MSS.0000139892.69410.D8. [PubMed] [CrossRef] [Google Scholar]

26. Carter J.M., Jeukendrup A.E., Jones D.A. The Effect of Carbohydrate Mouth Rinse on 1-h Cycle Time Trial Performance. Med. Sci. Sports Exerc. 2004;36:2107–2111. doi: 10.1249/01.MSS.0000147585.65709.6F. [PubMed] [CrossRef] [Google Scholar]

27. Phillips S.M., Van Loon L.J.C. Dietary Protein for Athletes: From Requirements to Optimum Adaptation. J. Sports Sci. 2011;29(Suppl. 1):S29–S38. doi: 10.1080/02640414.2011.619204. [PubMed] [CrossRef] [Google Scholar]

28. Phillips S.M. Dietary Protein Requirements and Adaptive Advantages in Athletes. Br. J. Nutr. 2012;108(Suppl. 2):S158–S167. doi: 10.1017/S0007114512002516. [PubMed] [CrossRef] [Google Scholar]

29. Burd N.A., West D.W.D., Moore D.R., Atherton P.J., Staples A.W., Prior T., Tang J.E., Rennie M.J., Baker S.K., Phillips S.M. Enhanced Amino Acid Sensitivity of Myofibrillar Protein Synthesis Persists for up to 24 h after Resistance Exercise in Young Men. J. Nutr. 2011;141:568–573. doi: 10.3945/jn.110.135038. [PubMed] [CrossRef] [Google Scholar]

30. Kerksick C.M., Arent S., Schoenfeld B.J., Stout J.R., Campbell B., Wilborn C.D., Taylor L., Kalman D., Smith-Ryan A.E., Kreider R.B., et al. International Society of Sports Nutrition Position Stand: Nutrient Timing. J. Int. Soc. Sports Nutr. 2017;14:33. doi: 10.1186/s12970-017-0189-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Wilmore J.H., Costill D.L., Kenney W.L. Fuel for Exercising Muscle: Metabolism and Hormonal Control. In: Wilmore J.H., Costill D.L., Kenney W.L., editors. Physiology of Sport and Exercise. 4th ed. Human Kinetics; Champaign, IL, USA: 2008. ISBN-13: 978-0-7360-5583-3. [Google Scholar]

32. Volek J.S., Noakes T., Phinney S.D. Rethinking Fat as a Fuel for Endurance Exercise. Eur. J. Sport Sci. 2015;15:13–20. doi: 10.1080/17461391.2014.959564. [PubMed] [CrossRef] [Google Scholar]

33. Institute of Medicine, Food and Nutrition Board . Total fat and fatty acids. In: Institute of Medicine (U.S.), editor. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. National Academies Press; Washington, DC, USA: 2005. [PubMed] [Google Scholar]

34. Terasawa N., Okamoto K., Nakada K., Masuda K. Effect of Conjugated Linoleic Acid Intake on Endurance Exercise Performance and Anti-Fatigue in Student Athletes. J. Oleo Sci. 2017;66:723–733. doi: 10.5650/jos.ess17053. [PubMed] [CrossRef] [Google Scholar]

35. Tajmanesh M., Aryaeian N., Hosseini M., Mazaheri R., Kordi R. Conjugated Linoleic Acid Supplementation Has No Impact on Aerobic Capacity of Healthy Young Men. Lipids. 2015;50:805–809. doi: 10.1007/s11745-015-4031-y. [PubMed] [CrossRef] [Google Scholar]

36. Kerksick C.M., Wilborn C.D., Roberts M.D., Smith-Ryan A., Kleiner S.M., Jäger R., Collins R., Cooke M., Davis J.N., Galvan E., et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018;15:38. doi: 10.1186/s12970-018-0242-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Macaluso F., Barone R., Catanese P., Carini F., Rizzuto L., Farina F., Di Felice V. Do Fat Supplements Increase Physical Performance? Nutrients. 2013;5:509–524. doi: 10.3390/nu5020509. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Convertino V.A., Armstrong L.E., Coyle E.F., Mack G.W., Sawka M.N., Senay L.C., Sherman W.M. American College of Sports Medicine Position Stand. Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 1996;28:i–vii. doi: 10.1097/00005768-199610000-00045. [PubMed] [CrossRef] [Google Scholar]

39. Noakes T.D., Sharwood K., Speedy D., Hew T., Reid S., Dugas J., Almond C., Wharam P., Weschler L. Three Independent Biological Mechanisms Cause Exercise-Associated Hyponatremia: Evidence from 2,135 Weighed Competitive Athletic Performances. Proc. Natl. Acad. Sci. USA. 2005;102:18550–18555. doi: 10.1073/pnas.0509096102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. American College of Sports Medicine Position Stand Exercise and Fluid Replacement. -PubMed-NCBI. [(accessed on 3 April 2019)]; Available online: https://www.ncbi.nlm.nih.gov/pubmed/17277604

41. Wyndham C.H., Strydom N.B. The Danger of an Inadequate Water Intake during Marathon Running. S. Afr. Med. J. 1969;43:893–896. [PubMed] [Google Scholar]

42. Almond C.S.D., Shin A.Y., Fortescue E.B., Mannix R.C., Wypij D., Binstadt B.A., Duncan C.N., Olson D.P., Salerno A.E., Newburger J.W., et al. Hyponatremia among Runners in the Boston Marathon. N. Engl. J. Med. 2005;352:1550–1556. doi: 10.1056/NEJMoa043901. [PubMed] [CrossRef] [Google Scholar]

43. Chorley J., Cianca J., Divine J. Risk Factors for Exercise-Associated Hyponatremia in Non-Elite Marathon Runners. Clin. J. Sport Med. 2007;17:471–477. doi: 10.1097/JSM.0b013e3181588790. [PubMed] [CrossRef] [Google Scholar]

44. Hew-Butler T., Ayus J.C., Kipps C., Maughan R.J., Mettler S., Meeuwisse W.H., Page A.J., Reid S.A., Rehrer N.J., Roberts W.O., et al. Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clin. J. Sport Med. 2008;18:111–121. doi: 10.1097/JSM.0b013e318168ff31. [PubMed] [CrossRef] [Google Scholar]

45. Krabak B.J., Parker K.M., DiGirolamo A. Exercise-Associated Collapse: Is Hyponatremia in Our Head? PM R. 2016;8(Suppl. 3):S61–S68. doi: 10.1016/j.pmrj.2015.10.002. [PubMed] [CrossRef] [Google Scholar]

46. Noakes T.D., Goodwin N., Rayner B.L., Branken T., Taylor R.K. Water Intoxication: A Possible Complication during Endurance Exercise. Med. Sci. Sports Exerc. 1985;17:370–375. doi: 10.1249/00005768-198506000-00012. [PubMed] [CrossRef] [Google Scholar]

47. Noakes T., IMMDA Fluid Replacement during Marathon Running. Clin. J. Sport Med. 2003;13:309–318. doi: 10.1097/00042752-200309000-00007. [PubMed] [CrossRef] [Google Scholar]

48. Montain S.J., Cheuvront S.N., Sawka M.N. Exercise Associated Hyponatraemia: Quantitative Analysis to Understand the Aetiology. Br. J. Sports Med. 2006;40:98–105. doi: 10.1136/bjsm.2005.018481. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Shaltout H.A., Eggebeen J., Marsh A.P., Brubaker P.H., Laurienti P.J., Burdette J.H., Basu S., Morgan A., Dos Santos P.C., Norris J.L., et al. Effects of Supervised Exercise and Dietary Nitrate in Older Adults with Controlled Hypertension and/or Heart Failure with Preserved Ejection Fraction. Nitric Oxide. 2017;69:78–90. doi: 10.1016/j.niox.2017.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Larsen F.J., Weitzberg E., Lundberg J.O., Ekblom B. Effects of Dietary Nitrate on Oxygen Cost during Exercise. Acta Physiol. Oxf. 2007;191:59–66. doi: 10.1111/j.1748-1716.2007.01713.x. [PubMed] [CrossRef] [Google Scholar]

51. Domínguez R., Cuenca E., Maté-Muñoz J.L., García-Fernández P., Serra-Paya N., Estevan M.C.L., Herreros P.V., Garnacho-Castaño M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients. 2017;9:43. doi: 10.3390/nu9010043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. McMahon N.F., Leveritt M.D., Pavey T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017;47:735–756. doi: 10.1007/s40279-016-0617-7. [PubMed] [CrossRef] [Google Scholar]

53. Jonvik K.L., Nyakayiru J., van Loon L.J.C., Verdijk L.B. Can Elite Athletes Benefit from Dietary Nitrate Supplementation? J. Appl. Physiol. 2015;119:759–761. doi: 10.1152/japplphysiol.00232.2015. [PubMed] [CrossRef] [Google Scholar]

54. Porcelli S., Pugliese L., Rejc E., Pavei G., Bonato M., Montorsi M., La Torre A., Rasica L., Marzorati M. Effects of a Short-Term High-Nitrate Diet on Exercise Performance. Nutrients. 2016;8:534. doi: 10.3390/nu8090534. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Clifford T., Constantinou C.M., Keane K.M., West D.J., Howatson G., Stevenson E.J. The Plasma Bioavailability of Nitrate and Betanin from Beta Vulgaris Rubra in Humans. Eur. J. Nutr. 2017;56:1245–1254. doi: 10.1007/s00394-016-1173-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. McIlvenna L.C., Monaghan C., Liddle L., Fernandez B.O., Feelisch M., Muggeridge D.J., Easton C. Beetroot Juice versus Chard Gel: A Pharmacokinetic and Pharmacodynamic Comparison of Nitrate Bioavailability. Nitric Oxide. 2017;64:61–67. doi: 10.1016/j.niox.2016.12.006. [PubMed] [CrossRef] [Google Scholar]

57. Larsen F.J., Ekblom B., Sahlin K., Lundberg J.O., Weitzberg E. Effects of Dietary Nitrate on Blood Pressure in Healthy Volunteers. N. Engl. J. Med. 2006;355:2792–2793. doi: 10.1056/NEJMc062800. [PubMed] [CrossRef] [Google Scholar]

58. Gomez-Cabrera M.-C., Borrás C., Pallardó F.V., Sastre J., Ji L.L., Viña J. Decreasing Xanthine Oxidase-Mediated Oxidative Stress Prevents Useful Cellular Adaptations to Exercise in Rats. Pt. 1J. Physiol. 2005;567:113–120. doi: 10.1113/jphysiol.2004.080564. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Gomez-Cabrera M.-C., Martínez A., Santangelo G., Pallardó F.V., Sastre J., Viña J. Oxidative Stress in Marathon Runners: Interest of Antioxidant Supplementation. Br. J. Nutr. 2006;96(Suppl. 1):S31–S33. doi: 10.1079/BJN20061696. [PubMed] [CrossRef] [Google Scholar]

60. Gomez-Cabrera M.-C., Domenech E., Romagnoli M., Arduini A., Borras C., Pallardo F.V., Sastre J., Viña J. Oral Administration of Vitamin C Decreases Muscle Mitochondrial Biogenesis and Hampers Training-Induced Adaptations in Endurance Performance. Am. J. Clin. Nutr. 2008;87:142–149. doi: 10.1093/ajcn/87.1.142. [PubMed] [CrossRef] [Google Scholar]

61. Gomez-Cabrera M.-C., Domenech E., Viña J. Moderate Exercise Is an Antioxidant: Upregulation of Antioxidant Genes by Training. Free Radic. Biol. Med. 2008;44:126–131. doi: 10.1016/j.freeradbiomed.2007.02.001. [PubMed] [CrossRef] [Google Scholar]

62. Vitale K.C., Hueglin S., Broad E. Tart Cherry Juice in Athletes: A Literature Review and Commentary. Curr. Sports Med. Rep. 2017;16:230–239. doi: 10.1249/JSR.0000000000000385. [PubMed] [CrossRef] [Google Scholar]

63. Bentley D.J., Ackerman J., Clifford T., Slattery K.S., Lamprecht M. Green Tea Catechins and Sport Performance. In: Lamprecht M., editor. Antioxidants in Sport Nutrition. CRC Press/Taylor & Francis; Boca Raton, FL, USA: 2015. ISBN-13 978-1-4665-6757-3. [Google Scholar]

64. Rourke S. Drinking Tea: Are the Health Benefits Real? [(accessed on 3 April 2019)]; Available online: http://www.medscape.com/viewarticle/907456

65. Kim J., Park J., Lim K. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity. J. Nutr. Sci. Vitaminol. 2016;62:141–161. doi: 10.3177/jnsv.62.141. [PubMed] [CrossRef] [Google Scholar]

66. Hursel R., Viechtbauer W., Dulloo A.G., Tremblay A., Tappy L., Rumpler W., Westerterp-Plantenga M.S. The Effects of Catechin Rich Teas and Caffeine on Energy Expenditure and Fat Oxidation: A Meta-Analysis. Obes. Rev. 2011;12:e573–e581. doi: 10.1111/j.1467-789X.2011.00862.x. [PubMed] [CrossRef] [Google Scholar]

67. Palmatier M.A., Kang A.M., Kidd K.K. Global Variation in the Frequencies of Functionally Different Catechol-O-Methyltransferase Alleles. Biol. Psychiatry. 1999;46:557–567. doi: 10.1016/S0006-3223(99)00098-0. [PubMed] [CrossRef] [Google Scholar]

68. Murase T., Haramizu S., Shimotoyodome A., Nagasawa A., Tokimitsu I. Green Tea Extract Improves Endurance Capacity and Increases Muscle Lipid Oxidation in Mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R708–R715. doi: 10.1152/ajpregu.00693.2004. [PubMed] [CrossRef] [Google Scholar]

69. Murase T., Haramizu S., Shimotoyodome A., Tokimitsu I., Hase T. Green Tea Extract Improves Running Endurance in Mice by Stimulating Lipid Utilization during Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290:R1550–R1556. doi: 10.1152/ajpregu.00752.2005. [PubMed] [CrossRef] [Google Scholar]

70. Partnerships Informed Choice. [(accessed on 3 April 2019)]; Available online: https://www.informed-choice.org/partnerships

71. Paluska S.A. Caffeine and Exercise. Curr. Sports Med. Rep. 2003;2:213–219. doi: 10.1249/00149619-200308000-00008. [PubMed] [CrossRef] [Google Scholar]

72. Goldstein E.R., Ziegenfuss T., Kalman D., Kreider R., Campbell B., Wilborn C., Taylor L., Willoughby D., Stout J., Graves B.S., et al. International Society of Sports Nutrition Position Stand: Caffeine and Performance. J. Int. Soc. Sports Nutr. 2010;7:5. doi: 10.1186/1550-2783-7-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Glaister M., Gissane C. Caffeine and Physiological Responses to Submaximal Exercise: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2018;13:402–411. doi: 10.1123/ijspp.2017-0312. [PubMed] [CrossRef] [Google Scholar]

74. Ivy J.L., Costill D.L., Fink W.J., Lower R.W. Influence of Caffeine and Carbohydrate Feedings on Endurance Performance. Med. Sci. Sports. 1979;11:6–11. doi: 10.2165/00007256-199111010-00002. [PubMed] [CrossRef] [Google Scholar]

75. Graham T.E., Hibbert E., Sathasivam P. Metabolic and Exercise Endurance Effects of Coffee and Caffeine Ingestion. J. Appl. Physiol. 1998;85:883–889. doi: 10.1152/jappl.1998.85.3.883. [PubMed] [CrossRef] [Google Scholar]

76. Graham T.E., Spriet L.L. Metabolic, Catecholamine, and Exercise Performance Responses to Various Doses of Caffeine. J. Appl. Physiol. 1995;78:867–874. doi: 10.1152/jappl.1995.78.3.867. [PubMed] [CrossRef] [Google Scholar]

77. Spriet L.L. Exercise and Sport Performance with Low Doses of Caffeine. Sports Med. 2014;44(Suppl. 2):175–184. doi: 10.1007/s40279-014-0257-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Armstrong L.E., Casa D.J., Maresh C.M., Ganio M.S. Caffeine, Fluid-Electrolyte Balance, Temperature Regulation, and Exercise-Heat Tolerance. Exerc. Sport Sci. Rev. 2007;35:135–140. doi: 10.1097/jes.0b013e3180a02cc1. [PubMed] [CrossRef] [Google Scholar]

79. Lara B., Ruiz-Moreno C., Salinero J.J., Del Coso J. Time Course of Tolerance to the Performance Benefits of Caffeine. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0210275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Beaumont R., Cordery P., Funnell M., Mears S., James L., Watson P. Chronic Ingestion of a Low Dose of Caffeine Induces Tolerance to the Performance Benefits of Caffeine. J. Sports Sci. 2017;35:1920–1927. doi: 10.1080/02640414.2016.1241421. [PubMed] [CrossRef] [Google Scholar]

81. Gonçalves L.S., Painelli V.S., Yamaguchi G., Oliveira L.F., Saunders B., da Silva R.P., Maciel E., Artioli G.G., Roschel H., Gualano B. Dispelling the Myth That Habitual Caffeine Consumption Influences the Performance Response to Acute Caffeine Supplementation. J. Appl. Physiol. 2017;123:213–220. doi: 10.1152/japplphysiol.00260.2017. [PubMed] [CrossRef] [Google Scholar]

82. Talanian J.L., Spriet L.L. Low and Moderate Doses of Caffeine Late in Exercise Improve Performance in Trained Cyclists. Appl. Physiol. Nutr. Metab. 2016;41:850–855. doi: 10.1139/apnm-2016-0053. [PubMed] [CrossRef] [Google Scholar]

83. Nichols A.W. Probiotics and Athletic Performance: A Systematic Review. Curr. Sports Med. Rep. 2007;6:269–273. doi: 10.1097/01.CSMR.0000306483.85035.b7. [PubMed] [CrossRef] [Google Scholar]

84. Spence L., Brown W.J., Pyne D.B., Nissen M.D., Sloots T.P., McCormack J.G., Locke A.S., Fricker P.A. Incidence, Etiology, and Symptomatology of Upper Respiratory Illness in Elite Athletes. Med. Sci. Sports Exerc. 2007;39:577–586. doi: 10.1249/mss.0b013e31802e851a. [PubMed] [CrossRef] [Google Scholar]

85. Leite G.S.F., Resende Master Student A.S., West N.P., Lancha A.H. Probiotics and Sports: A New Magic Bullet? Nutrition. 2019;60:152–160. doi: 10.1016/j.nut.2018.09.023. [PubMed] [CrossRef] [Google Scholar]

86. Coqueiro A.Y., de Oliveira Garcia A.B., Rogero M.M., Tirapegui J. Probiotic Supplementation in Sports and Physical Exercise: Does It Present Any Ergogenic Effect? Nutr. Health. 2017;23:239–249. doi: 10.1177/0260106017721000. [PubMed] [CrossRef] [Google Scholar]

87. Pedersen D.J., Lessard S.J., Coffey V.G., Churchley E.G., Wootton A.M., Ng T., Watt M.J., Hawley J.A. High Rates of Muscle Glycogen Resynthesis after Exhaustive Exercise When Carbohydrate Is Coingested with Caffeine. J. Appl. Physiol. 2008;105:7–13. doi: 10.1152/japplphysiol.01121.2007. [PubMed] [CrossRef] [Google Scholar]

88. Davis W. Wheat Belly: Lose the Wheat, Lose the Weight, and Find. Your Path Back to Health. Rodale Books; Emmaus, PA, USA: 2014. ISBN 13: 978-1-60961-479-9. [Google Scholar]

89. Perlmutter D. Grain Brain: The Surprising Truth about Wheat, Carbs, and Sugar—Your Brain’s Silent Killers. Hachette; London, UK: 2018. ISBN 13: 978-0316234801. [Google Scholar]

90. Piercy K.L., Troiano R.P., Ballard R.M., Carlson S.A., Fulton J.E., Galuska D.A., George S.M., Olson R.D. The Physical Activity Guidelines for Americans. JAMA. 2018;320:2020–2028. doi: 10.1001/jama.2018.14854. [PubMed] [CrossRef] [Google Scholar]

91. Duckworth A. Grit: The Power of Passion and Perseverance (Vol. 124) Scribner; New York, NY, USA: 2016. ISBN 13: 978-1-5011-1110-5. [Google Scholar]

92. What You Need to Know about Dietary Supplements. [(accessed on 3 April 2019)]; Available online: https://www.fda.gov/food/dietarysupplements/usingdietarysupplements/ucm109760.htm