What is considered a cleaner?

The difference between an abrasive and non-abrasive cleaner will indicate which to use for the different elements of your cleaning schedule. Therefore, you will need to be educated about their differences. No single product will work for all surfaces in your workplace, it is impossible or will even damage the surface or item. In summary, there are the following cleaners available: all-purpose (abrasive and non-abrasive), speciality and other cleaning aids which are more ‘natural’.


Abrasive Cleaner


Essentially, an abrasive cleaner is designed to remove heavy duty dirt in small areas. They can come as either a powder or a liquid. They remove the need for ‘elbow-grease’ as they are strong enough to remove the dirt without excessive efforts. We recommend using a scouring pad to accompany the cleaner to make the process even easier. The abrasiveness of the product is because of its ingredients. Small particles of minerals such as calcite, feldspar, quartz and silica are what makes them able to clean so strongly.


The degree of abrasiveness will vary depending on the specific product and the surface it is being used on. Always check the label of the cleaning agent and the surface manufacturers instructions before using an abrasive cleaner. This is because they can be VERY strong and could damage the item if it is not cut out for such a powerful substance to be used on it.


Some abrasive cleaners can disinfect surfaces. This is by containing an antimicrobial agent which helps reduce the bacterial population that lives on the surface. It is because of their strength and sometimes disinfecting features which make them a staple for your cleaning product arsenal.


Depending on the reason for cleaning will mean their ingredients may contain different minerals in order to successfully clean it. For example, if you want to remove a greasy film on the office kitchen sink, you may want to use a powdered variant as they are better to remove oils. If you want to remove food or mould you will want to use an abrasive cleaner which contains bleaching agents. If you want to remove rust you will want to use one which includes oxalic acid or sodium hydrosulphite in the ingredients list.


Non-Abrasive Cleaner


Similar to abrasive, non-abrasive can come in the form of powder or liquid. The powder is diluted to your desire, the liquid form can also be diluted but can be used at full strength too. Non-abrasive can also have disinfecting properties with the aim to kill bacteria on surfaces. Germs are a common cause for illness in the workplace, therefore a cleaner which can disinfect is ideal to use.


This type of cleaning product is best used for surfaces such as floors, painted walls, countertops and woodwork as they will not have direct and stubborn dirt on them which will require a stronger substance to remove it. However, because of the option of diluting or full strength, they can be used in some heavy-duty situations which do not need as much strength as an abrasive cleaner.


The main ingredients are surfactants and builders, but can also include ammonia, pine oil and organic solvents like ethanol or isopropanol. Most all-purpose cleaners work best in alkaline conditions, therefore non-abrasive will often contain alkaline buffer salt to keep the pH at a constant value.


Here at WINNS Services, we provide several different cleaning services for companies based on your time and budget. We have been established for over two decades and have gained a great deal of knowledge and experience from this. Our staff are all carefully hand-picked by us to suit your company's needs.

For more information about WINNS cleaning services or to book our cleaning services please contact us on 01702 719100 or or email us at

What is considered a cleaner?

Cleaning is the removal of foreign material (e.g., soil, and organic material) from objects and is normally accomplished using water with detergents or enzymatic products. Thorough cleaning is required before high-level disinfection and sterilization because inorganic and organic materials that remain on the surfaces of instruments interfere with the effectiveness of these processes. Also, if soiled materials dry or bake onto the instruments, the removal process becomes more difficult and the disinfection or sterilization process less effective or ineffective. Surgical instruments should be presoaked or rinsed to prevent drying of blood and to soften or remove blood from the instruments.

Cleaning is done manually in use areas without mechanical units (e.g., ultrasonic cleaners or washer-disinfectors) or for fragile or difficult-to-clean instruments. With manual cleaning, the two essential components are friction and fluidics. Friction (e.g., rubbing/scrubbing the soiled area with a brush) is an old and dependable method. Fluidics (i.e., fluids under pressure) is used to remove soil and debris from internal channels after brushing and when the design does not allow passage of a brush through a channel.445 When a washer-disinfector is used, care should be taken in loading instruments: hinged instruments should be opened fully to allow adequate contact with the detergent solution; stacking of instruments in washers should be avoided; and instruments should be disassembled as much as possible.

The most common types of mechanical or automatic cleaners are ultrasonic cleaners, washer-decontaminators, washer-disinfectors, and washer-sterilizers. Ultrasonic cleaning removes soil by cavitation and implosion in which waves of acoustic energy are propagated in aqueous solutions to disrupt the bonds that hold particulate matter to surfaces. Bacterial contamination can be present in used ultrasonic cleaning solutions (and other used detergent solutions) because these solutions generally do not make antibacterial label claims 446. Even though ultrasound alone does not significantly inactivate bacteria, sonication can act synergistically to increase the cidal efficacy of a disinfectant 447. Users of ultrasonic cleaners should be aware that the cleaning fluid could result in endotoxin contamination of surgical instruments, which could cause severe inflammatory reactions 448. Washer-sterilizers are modified steam sterilizers that clean by filling the chamber with water and detergent through which steam passes to provide agitation. Instruments are subsequently rinsed and subjected to a short steam-sterilization cycle. Another washer-sterilizer employs rotating spray arms for a wash cycle followed by a steam sterilization cycle at 285°F 449, 450. Washer-decontaminators/disinfectors act like a dishwasher that uses a combination of water circulation and detergents to remove soil. These units sometimes have a cycle that subjects the instruments to a heat process (e.g., 93ºC for 10 minutes) 451. Washer-disinfectors are generally computer-controlled units for cleaning, disinfecting, and drying solid and hollow surgical and medical equipment. In one study, cleaning (measured as 5–6 log10 reduction) was achieved on surfaces that had adequate contact with the water flow in the machine 452. Detailed information about cleaning and preparing supplies for terminal sterilization is provided by professional organizations 453, 454 and books 455. Studies have shown that manual and mechanical cleaning of endoscopes achieves approximately a 4-log10 reduction of contaminating organisms 83, 104, 456, 457. Thus, cleaning alone effectively reduces the number of microorganisms on contaminated equipment. In a quantitative analysis of residual protein contamination of reprocessed surgical instruments, median levels of residual protein contamination per instrument for five trays were 267, 260, 163, 456, and 756 µg 458. In another study, the median amount of protein from reprocessed surgical instruments from different hospitals ranged from 8 µg to 91 µg.459 When manual methods were compared with automated methods for cleaning reusable accessory devices used for minimally invasive surgical procedures, the automated method was more efficient for cleaning biopsy forceps and ported and nonported laparoscopic devices and achieved a >99% reduction in soil parameters (i.e., protein, carbohydrate, hemoglobin) in the ported and nonported laparoscopic devices. 460, 461

For instrument cleaning, a neutral or near-neutral pH detergent solution commonly is used because such solutions generally provide the best material compatibility profile and good soil removal. Enzymes, usually proteases, sometimes are added to neutral pH solutions to assist in removing organic material. Enzymes in these formulations attack proteins that make up a large portion of common soil (e.g., blood, pus). Cleaning solutions also can contain lipases (enzymes active on fats) and amylases (enzymes active on starches). Enzymatic cleaners are not disinfectants, and proteinaceous enzymes can be inactivated by germicides. As with all chemicals, enzymes must be rinsed from the equipment or adverse reactions (e.g., fever, residual amounts of high-level disinfectants, proteinaceous residue) could result. 462, 463 Enzyme solutions should be used in accordance with manufacturer’s instructions, which include proper dilution of the enzymatic detergent and contact with equipment for the amount of time specified on the label.463 Detergent enzymes can result in asthma or other allergic effects in users. Neutral pH detergent solutions that contain enzymes are compatible with metals and other materials used in medical instruments and are the best choice for cleaning delicate medical instruments, especially flexible endoscopes 457. Alkaline-based cleaning agents are used for processing medical devices because they efficiently dissolve protein and fat residues 464; however, they can be corrosive. 457 Some data demonstrate that enzymatic cleaners are more effective than neutral detergents 465, 466 in removing microorganisms from surfaces but two more recent studies found no difference in cleaning efficiency between enzymatic and alkaline-based cleaners. 443, 464 Another study found no significant difference between enzymatic and non-enzymatic cleaners in terms of microbial cleaning efficacy 467. A new non-enzyme, hydrogen peroxide-based formulation (not FDA-cleared) was as effective as enzymatic cleaners in removing protein, blood, carbohydrate, and endotoxin from surface test carriers468 In addition, this product effected a 5-log10 reduction in microbial loads with a 3-minute exposure at room temperature.468

Although the effectiveness of high-level disinfection and sterilization mandates effective cleaning, no “real-time” tests exist that can be employed in a clinical setting to verify cleaning. If such tests were commercially available they could be used to ensure an adequate level of cleaning.469-472 The only way to ensure adequate cleaning is to conduct a reprocessing verification test (e.g., microbiologic sampling), but this is not routinely recommended 473. Validation of the cleaning processes in a laboratory-testing program is possible by microorganism detection, chemical detection for organic contaminants, radionuclide tagging, and chemical detection for specific ions 426, 471. During the past few years, data have been published describing use of an artificial soil, protein, endotoxin, X-ray contrast medium, or blood to verify the manual or automated cleaning process 169, 452, 474-478 and adenosine triphosphate bioluminescence and microbiologic sampling to evaluate the effectiveness of environmental surface cleaning170, 479. At a minimum, all instruments should be individually inspected and be visibly clean.