What factors most account for the creation of a tropical climate throughout much of the Indian subcontinent?

  1. Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991).

    Article  CAS  ADS  Google Scholar 

  2. Smith, S. A., Bell, G. & Bermingham, E. Cross-Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages. Proc. R. Soc. B 271, 1889–1896 (2004).

    Article  Google Scholar 

  3. Erkens, R. H. J., Chatrou, L. W., Maas, J. W., van der Niet, T. & Savolainen, V. A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Mol. Phylogenet. Evol. 44, 399–411 (2007).

    Article  CAS  Google Scholar 

  4. Marshall, L. G. Land mammals and the great American interchange. Am. Sci. 76, 380–388 (1988).

    ADS  Google Scholar 

  5. Elias, S. A., Short, S. K., Nelson, C. H. & Birks, H. H. Life and times of the Bering land bridge. Nature 382, 60–63 (1996).

    Article  CAS  ADS  Google Scholar 

  6. Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: what do molecules suggest? J. Biosci. 34, 687–697 (2009).

    Article  Google Scholar 

  7. Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends. Ecol. Evol. 19, 639–644 (2004).

    Article  Google Scholar 

  8. Sedio, B. E., Paul, J. R., Taylor, C. M. & Dick, C. W. Fine-scale niche structure of Neotropical forests reflects a legacy of the Great American Biotic Interchange. Nat. Commun. 4, 2317 (2013).

    Article  ADS  Google Scholar 

  9. Ali, J. R. & Aitchison, J. C. Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166‐35 Ma). Earth Sci. Rev. 88, 145–166 (2008).

    Article  ADS  Google Scholar 

  10. Meng, J. et al. India‐Asia collision was at 24N and 50Ma: palaeomagnetic proof from southernmost Asia. Sci. Rep. 2, 925 (2012).

    Article  Google Scholar 

  11. Rage, J.-C. et al. Collision age. Nature 375, 286 (1995).

    Article  CAS  ADS  Google Scholar 

  12. van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  CAS  ADS  Google Scholar 

  13. Morley, R. J. in Origin and Evolution of Tropical Rain Forests John Wiley & Sons (2000).

  14. Morley, R. J. in Biotic Evolution and Environmental Change in Southeast Asia ed Gower D. J.et al. 79–114Cambridge University Press (2012).

  15. Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species' ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

    Article  CAS  ADS  Google Scholar 

  16. Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. MO Bot. Gard. 75, 1 (1988).

    Article  Google Scholar 

  17. Slik, J. W. F. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. USA 112, 7472–7477 (2015).

    Article  ADS  Google Scholar 

  18. Allen, A. P., Gillooly, J. F., van Savage, M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

    Article  CAS  ADS  Google Scholar 

  19. Wright, S., Keeling, J. & Gillman, L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc. Natl Acad. Sci. USA 103, 7718–7722 (2006).

    Article  CAS  ADS  Google Scholar 

  20. Najman, Y. et al. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res. Sol. Ea. 115, B12416 (2010).

    Article  ADS  Google Scholar 

  21. Songtham, W., Ratanasthien, B., Mildenhall, D. C., Singharajwarapan, S. & Kandharosa, W. Oligocene-Miocene climatic changes in northern Thailand resulting from extrusion tectonics of Southeast Asian landmass. Sci. Asia 29, 221 (2003).

    Article  Google Scholar 

  22. Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India‐Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).

    Article  CAS  ADS  Google Scholar 

  23. Gibbons, A. D., Zahirovic, S., Müller, R. D., Whittaker, J. M. & Yatheesh, V. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res. 28, 451–492 (2015).

    Article  ADS  Google Scholar 

  24. Xu, W.-C., Zhang, H.-F., Harris, N., Guo, L. & Pan, F.-B. Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance. Gondwana Res. 23, 715–725 (2013).

    Article  CAS  ADS  Google Scholar 

  25. Mayr, G. et al. Quercypsitta-like birds from the early Eocene of India (Aves,?Psittaciformes). J. Vertebr. Paleontol. 30, 467–478 (2010).

    Article  Google Scholar 

  26. Prasad, G. V. R. Vertebrate biodiversity of the Deccan volcanic province of India: a review. Bull. Soc. Geol. Fr. 183, 597–610 (2012).

    Article  Google Scholar 

  27. Boucot, A. J., Xu, C., Scotese, C. R. & Morley, R. J. in Phanerozoic Paleoclimate. An Atlas of Lithologic Indicators of Climate Society of Economic Paleontologists and Mineralogists (2013).

  28. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).

    Article  CAS  ADS  Google Scholar 

  29. Ratanasthien, B., Takashima, I. & Matsubaya, O. Paleaogeography and climatic change recorded on Viviparidae carbon and oxygen isotope in Mae Moh coal mine, northern Thailand. Bull. Geol. Surv. Jpn 59, 327–338 (2008).

    Article  CAS  Google Scholar 

  30. Watanasak, M. Mid-Tertiary palynostratigraphy of Thailand. J. Southe. Asian Earth 4, 203–218 (1990).

    Article  ADS  Google Scholar 

  31. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Article  CAS  ADS  Google Scholar 

  32. Wan, S., Kürschner, W. M., Clift, P. D., Li, A. & Li, T. Extreme weathering/erosion during the Miocene Climatic Optimum. Evidence from sediment record in the South China Sea. Geophys. Res. Lett. 36, L19706 (2009).

    Article  ADS  Google Scholar 

  33. Champion, H. G. A preliminary survey of the forest types of India and Burma. Indian Forest Records (Silviculture) 1, 263–264 (1936).

    Google Scholar 

  34. Ashton, P. S., Seidler, R. & Kassim, A. R. in On the Forests of Tropical Asia. Lest the Memory Fade Kew Publishing, Royal Botanical Gardens (2014).

  35. Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Article  CAS  ADS  Google Scholar 

  36. Mehrotra, R. C., Bera, S. K., Basumatary, S. K. & Srivastava, G. Study of fossil wood from the Middle‐Late Miocene sediments of Dhemaji and Lakhimpur districts of Assam, India and its palaeoecological and palaeophytogeographical implications. J. Earth. Syst. Sci. 120, 681–701 (2011).

    Article  ADS  Google Scholar 

  37. Awasthi, N. in Advances in Legume Systematics. 4. The Fossil Record eds Herendeen P. S., Dilcher D. L. 225–250Kew (1992).

  38. Shukla, A., Mehrotra, R. C. & Guleria, J. S. Emergence and extinction of Dipterocarpaceae in western India with reference to climate change. Fossil wood evidences. J. Earth. Syst. Sci. 122, 1373–1386 (2013).

    Article  ADS  Google Scholar 

  39. Reipurth, B. et al. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 9 (1989).

    Google Scholar 

  40. Guleria, J. S. Neogene vegetation of peninsular India. Palaeobotanist 40, 285–331 (1992).

    Google Scholar 

  41. Stern, L. A., Johnson, G. D. & Chamberlain, C. P. Carbon isotope signature of environmental change found in fossil ratite eggshells from a South Asian Neogene sequence. Geology 22, 419–422 (1994).

    Article  ADS  Google Scholar 

  42. Kent, D. V. & Muttoni, G. Equatorial convergence of India and early Cenozoic climate trends. Proc. Natl Acad. Sci. USA 105, 16065–16070 (2008).

    Article  CAS  ADS  Google Scholar 

  43. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  Google Scholar 

  44. Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    Article  CAS  Google Scholar 

  45. Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6 Available at http://beast.bio.ed.ac.uk/Tracer (2014).

  46. R Core Team. R: a language and environment for statistical computing Available at https://www.R-project.org (2015).

  47. Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article  Google Scholar 

  48. Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).

    Article  Google Scholar 

  49. Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    Article  Google Scholar 

  50. Sanmartín, I., Enghoff, H. & Ronquist, F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390 (2001).

    Article  Google Scholar 

  51. Sanmartín, I. & Ronquist, F. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst. Biol. 53, 216–243 (2004).

    Article  Google Scholar 

  52. Stelbrink, B., Albrecht, C., Hall, R. & von Rintelen, T. The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace’s ‘anomalous island’? Evolution 66, 2252–2271 (2012).

    Article  Google Scholar 

  53. de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).

    Article  Google Scholar 

  54. Lieberman, B. S. Geobiology and paleobiogeography: tracking the coevolution of the Earth and its biota. Paleogeogr. Paleoclimatol. Paleoecol. 219, 23–33 (2005).

    Article  ADS  Google Scholar 

  55. Etienne, R. S. & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204–213 (2012).

    Article  Google Scholar 

  56. Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Proc. R. Soc. B 344, 305–311 (1994).

    CAS  Google Scholar 

  57. James, N. A. & Matteson, D. S. ecp: An R package for nonparametric multiple change point analysis of multivariate data. J. Stat. Softw. 62, 1–25 (2014).

    Article  Google Scholar 

  58. Székely, G. J. & Rizzo, M. L. Hierarchical clustering via joint between-within distances. Extending Ward’s minimum variance method. J. Classif. 22, 151–183 (2005).

    Article  MathSciNet  Google Scholar 

  59. Rizzo, M. L. & Székely, G. J. DISCO analysis: a nonparametric extension of analysis of variance. Ann. Appl. Probab. 4, 1034–1055 (2010).

    MathSciNet  MATH  Google Scholar 

  60. Bajpai, S. & Kapur, V. V. Earliest cenozoic frogs from the Indian subcontinent: implications for out-of-India hypothesis. J. Palaeontol. Soc. Ind. 53, 65–71 (2008).

    Google Scholar 

  61. Prasad, G. V. R. & Bajpai, S. Agamid lizards from the early Eocene of western India: oldest cenozoic lizards from South Asia. Palaeontol. Electron. 11.1.4A, 19p (2008).

    Google Scholar 

  62. Rust, J. et al. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc. Natl Acad. Sci. USA 107, 18360–18365 (2010).

    Article  CAS  ADS  Google Scholar 


Page 2

Arrowheads indicate estimated change points. Increase of MDE between 45 and 40 Ma points to a complete terrestrial connection between colliding continents. Periods of stagnant MDE coincide with intensification of the monsoon system and increased seasonality, whereas the strong decrease in MDE after the Mid Miocene Climatic Optimum might be elicited by increasing aridity in northern India.