O que é ciclo de krebs

Ouça este artigo:

O ciclo de Krebs, também conhecido como ciclo do ácido cítrico, se trata de uma sequência de reações mediadas por enzimas que compõem a fosforilação oxidativa. A eficiência energética dessa etapa não é alta, entretanto sua função primordial é a geração de “substrato” para a etapa mais energética da respiração celular aeróbia, a cadeia respiratória.

Essas reações ocorrem na matriz da mitocôndria dos eucariontes e no citoplasma dos procariontes. Como o próprio nome indica, são reações cíclicas, ou seja, o produto final entra novamente no ciclo, que têm como função a oxidação de açucares e lipídeos a gás carbônico e água. Assim, durante as reações ocorre a produção de metabólitos para outros processos, geração de energia e liberação de íons e elétrons altamente energéticos. Esses processos contam com o auxílio de moléculas aceptoras como a nicotilamida adenina dinucleotideo (NAD) e o flavina adenina dinucleotídeo (FAD).

O Ciclo

O ciclo de Krebs começa com a acetilcoenzima A (Acetil-CoA), produzida a partir do piruvato, que é produto da glicólise, ou da oxidação de ácidos graxos pela β-oxidação. A coenzima reage com o ácido oxalacético formando o citrato, sendo que a reação é catalisada pela enzima citrato sintase. Após isso, o citrato perde água pela desidratação catalisada pela enzima aconitase gerando o isocitrato.

Após a formação do isocitrato, esse perde um hidrogênio com o auxílio do NAD, que é transformado em NADH. Além disso, ocorre, também, a descarboxilação (perda de carbono) com a saída de gás carbônico. Essas reações utilizam a enzima isocitrato desidrogenase e geram o α-Cetoglutarato. Esse α-Cetoglutarato sofre uma reação semelhante à anterior, perdendo um hidrogênio e um carbono com a geração de um composto de apenas quatro carbonos que se combina imediatamente com a coenzima A, denominado succinil-CoA.

Esse succinil CoA passa por uma reação, catalisada pela Succinil Coa sintetase, que gera energia ao perder a coenzima A, formando o succinato. Isso ocorre com a geração de GTP, que é transformado em ATP posteriormente, a partir do GDP e fosfato inorgânico presente na matriz.

Com o auxílio da enzima succinato desidrogenase, o succinato perde dois hidrogênios gerando o fumarato. Esse processo ocorre com o FAD recebendo esses dois hidrogênios se transformando em FADH2, diz-se que o FAD foi reduzido à FADH2. O fumarato, por sua vez, recebe água por um processo chamado de hidratação gerando o malato. Nesse sentido, essa reação utiliza a enzima fumarase como catalisadora. O malato, enfim, perde um hidrogênio com o auxílio da malato desidrogenase e do NAD, que se transforma em NADH. O resultado dessa reação é, justamente, o oxaloacetato que entrará novamente no ciclo.

A função principal de ocorrer o ciclo do ácido cítrico foi mencionada anteriormente: geração de energia, direta ou indiretamente. Entretanto esse não é o único papel dessas reações de extrema importância.

Primeiramente, vamos detalhar um pouco a parte de geração de energia. Com pode ser visto na descrição, cada vez que a Acetil-CoA entra no ciclo ocorre a produção de um ATP. Como cada molécula de glicose que passa pela glicolise gera duas de piruvato e esse é utilizado na formação de Acetil-CoA, é dito que o ciclo de Krebs gera 2 moléculas de ATP para cada uma de glicose. Caso tenha ficado complicado o entendimento, expliquemos inversamente: o ciclo do ácido cítrico inicia-se com a Acetil-CoA. Essa coenzima é derivada do piruvato que é resultado da glicólise, sendo que nesse processo uma glicose gera 2 piruvatos.

Uma vez que essa produção de energia não é muito eficiente, aloca-se a função principal desse ciclo para produzir elétrons altamente energéticos e prótons. Esses produtos passarão por outro processo denominado Sistema Transportador de Elétrons que será a etapa mais eficiente e altamente energética.

Ainda no sentido das funções, é importante destacar outro aspecto desse ciclo tão importante: a formação de metabólitos que são utilizados em outros processos. Veja bem, acima é possível observar claramente que, pelo ciclo do ácido cítrico, ocorre a quebra de compostos com determinado objetivo (catabolismo). Entretanto, esse processo mitocondrial possui importância na construção de moléculas (anabolismo). Isto é, alguns compostos intermediários do ciclo de Krebs também podem ser utilizados na formação de outros compostos, como é o caso do oxaloacetato que participa na geração do aspartato, entre outros.

Enfim, o ciclo de Krebs é uma sequência de reações de extrema importância por participar, direta ou indiretamente, na geração de energia e formação de diversos compostos através de processos catabólicos e anabólicos.

Bibliografia:

Junqueira, L. C. & Carneiro, J. Biologia Celular e Molecular. 9ª Edição. Editora Guanabara Koogan. 338 páginas. 2012.

Guyton, A.C. & Hall, J.E. Tratado de Fisiologia Médica. 11ª Edição. Editora Elsevier. 1115 páginas. 2006

O ciclo de Krebs, tricarboxílico ou do ácido cítrico, também referido como ciclo dos ácidos tricarboxílicos (em inglês, TCA), é uma série de reações químicas que ocorrem na vida da célula e seu metabolismo foi descrito pelo bioquímico alemão Hans Adolf Krebs.

O que é ciclo de krebs

Um esquema que demonstra a via metabólica do ciclo de Krebs

O ciclo é executado na matriz da mitocôndria dos eucariontes e no citoplasma dos procariontes. Trata-se de uma parte do metabolismo dos organismos aeróbicos (utilizando oxigênio da respiração celular); organismos anaeróbicos utilizam outro mecanismo, como a fermentação lática, onde o piruvato é o receptor final de elétrons na via glicolítica, gerando lactato.[1]

O ciclo de Krebs é uma rota anfibólica, ou seja, possui reações catabólicas e anabólicas, com a finalidade de oxidar a acetil-CoA (acetil coenzima A), que se obtém da degradação de carboidratos, ácidos graxos e aminoácidos a duas moléculas de dióxido de carbono (CO2).

Este ciclo inicia-se quando o piruvato que é sintetizado durante a glicólise é transformado em acetil CoA (coenzima A) por acção da enzima piruvato desidrogenase. Este composto vai reagir com o oxaloacetato que é um produto do ciclo anterior formando-se citrato. O citrato vai dar origem a um composto de cinco carbonos, o alfa-cetoglutarato com libertação de NADH2, e de CO2. O alfa-cetoglutarato vai dar origem a outros compostos de quatro carbonos com formação de GTP, FADH2 e NADH e oxaloacetato.

Após o ciclo de Krebs, ocorre outro processo denominado fosforilação oxidativa.

O ciclo do ácido cítrico começa com a quebra de carboidratos, aminoácido e ácidos-graxos em Acetil-CoA (2 carbonos), se misturando ao ácido oxalacético(4 carbonos)e dando origem ao ácido cítrico com 6 carbonos, o ácido cítrico perde um carbono e um hidrogênio, o carbono se perde no meio e o hidrogênio e incorporado pelo NAD (nicotinamida adenina dinucleotídio) que vira NADH, o antes ácido cítrico vira ácido alfa-cetoglutário com 5 carbonos, novamente perde um carbono e um hidrogênio, o carbono se perde no meio e o hidrogênio é incorporado pelo NAD que vira NADH, o antes ácido-alfacetoglutário vira Sucinil COA com 4 carbonos, não podendo mais perder carbono o sucinil libera o COA que o conduziu até ali, nesse estágio do ciclo já essa possível transformar ADP ( adenosina difosfato) em ATP (adenosina trifosfato) que é a energia da célula. Depois da produção de energia o sucinil COA vira ácido sucinico com 4 carbonos, já não podendo perder carbonos, ele perde duas moléculas de hidrogênio, o FAD ( flavina adenina dinucleotídio) incorpora, pelo fato de o NAD só poder incorporar 1 molécula, e o então FAD vira FADH2, e o até então ácido sucinico vira ácido málico com 4 carbonos, não podendo mais perder carbono, é liberado 1 molécula de hidrogênio, o NAD incorpora e vira NADH, perdendo essa molécula de hidrogênio ele vira ácido oxalacético novamente para iniciar o ciclo outra vez.

O citrato então passa por uma série de transformações químicas, perdendo dois grupos carboxila na forma de CO2. Os carbonos liberados na forma de CO2 são oriundos do oxaloacetato, e não diretamente do Acetil-CoA. Os carbonos doados pelo Acetil-CoA se tornam parte do oxaloacetato após o primeiro passo do ciclo do ácido cítrico.

A transformação dos carbonos doados pelo Acetil-CoA em CO2 requer vários passos no ciclo de Krebs. No entanto, por causa do papel do ácido cítrico no anabolismo (síntese de substâncias orgânicas), ele pode não ser perdido já que muitas substâncias intermediárias do ciclo também são usadas como precursoras para a biossíntese em outras moléculas.

A maior parte da energia disponível graças ao processo oxidativo do ciclo é transferida por elétrons altamente energéticos que reduzem o NAD+, transformando-o em NADH. Para cada grupo acetila que entra no ciclo de Krebs, três moléculas de NADH são produzidas (o equivalente a 2,5 ATPs).

Elétrons também são transferidos ao receptor Q, formando QH2.

No final de cada ciclo, o Oxoalocetato de quatro carbonos é regenerado, e o processo continua sucessivamente.

São produzidas 38 moléculas de ATP.

Dois carbonos são oxidados, tornando-se CO2, e a energia dessas reações é armazenada em GTP, NADH e FADH2. NADH e FADH2 são coenzimas (moléculas que ativam ou intensificam enzimas) que armazenam energia e são utilizadas na fosforilação oxidativa.

Passo Substrato Enzima Tipo da reação Reagentes/
Coenzimas
Produtos/
Coenzimas
1 Oxaloacetato Citrato sintase Condensação Acetil CoA +
H2O
CoA-SH
2 Citrato Aconitase Desidratação/Hidratação H2O H2O
3 Isocitrato Isocitrato desidrogenase Oxidação NAD+ NADH + H+
4 Oxalosuccinato Isocitrato desidrogenase Decarboxilação H+ CO2
5 α-Cetoglutarato α-Cetoglutarato desidrogenase Decarboxilação
oxidativa
NAD+ +
CoA-SH
NADH + H+
+ CO2
6 Succinil-CoA Succinil-CoA sintetase Fosforilação ao nível do substrato GDP + Pi GTP +
CoA-SH
7 Succinato Succinato desidrogenase Oxidação FAD FADH2
8 Fumarato Fumarase Adição (H2O) H2O
9 L-Malato Malato desidrogenase Oxidação NAD+ NADH + H+

As principais etapas do ciclo de Krebs

  1. Oxalacetato (4 átomos de carbono) a Citrato (6 C): O ácido acético proveniente das vias de oxidação de glícidos, lípidos e proteínas, combinam-se com a coenzima a formando o Acetil - CoA. A entrada deste composto no ciclo de Krebs ocorre pela combinação do ácido acético com o oxalacetato presente na matriz mitocondrial. Esta etapa resulta na formação do primeiro produto do ciclo de Krebs, o citrato. O coenzima A, sai da reação como CoASH.
  2. Citrato (6 C) a Isocitrato (6 C): O citrato sofre uma desidratação originando o isocitrato. Esta etapa acontece para que a molécula de citrato seja preparada para as reações de oxidação seguintes
  3. Isocitrato (6 C) a αcetoglutarato (5 C): Nesta reação há participação de NAD, onde o isocitrato sofre uma descarboxilação e uma desidrogenação transformando o NAD em NADH, liberando um CO2 e originando como produto o alfa-cetoglutarato
  4. αcetoglutarato (5 C) a Succinil - CoA (4 C): O α-cetoglutarato sofre uma descarboxilação, liberando um CO2. Também ocorre uma desidrogenação com um NAD originando um NADH, e o produto da reação acaba sendo o Succinato
  5. Succinil - CoA (4 C) a Succinato (4 C): Nesta reação houve entrada de GDP+Pi, e liberação de CoA-SH. O succinil-CoA libera grande quantidade de energia quando perde a CoA, originando succinato. A energia liberada é aproveitada para fazer a ligação do GDP com o Pi(fosfato inorgânico), formando o GTP, como o GTP não é utilizado para realizar trabalho deve ser convertido em ATP, assim esta é a única etapa do Ck que forma ATP.
  6. Succinato (4 C) a Fumarato (4 C): Nesta etapa entra FAD. O succinato sofre oxidação através de uma desidrogenação originando fumarato e FADH2. O FADH2 é formado a partir da redução do FAD.
  7. Fumarato (4 C) a Malato (4 C): O fumarato é hidratado formando malato.
  8. Malato (4 C) a Oxalacetato (4 C): Nesta etapa entra NAD. O malato sofre uma desidrogenação originando NADH, a partir do NAD, e regenerando o oxalacetato.

Os intermediários do Ciclo de Krebs apresentados segundo projeções de Fischer mostram as mudanças químicas passo a passo. Essa imagem pode ser comparada à representação através do modelo poligonal.[2] Outra comparação de projeções de Fischer e o modelo poligonal no Ciclo de Krebs é mostrado em vídeo.[3]

 

Estruturas doyjjys intermediários do ciclo do ácido cítrico mostradas utilizando projeções de Fischer, à esquerda, e modelo poligonal, à direita. Dois carbonos correspondentes ao grupo acetil na forma ativada na acetil-CoA (AcoA), parte superior da figura, condensam com a molécula de quatro carbonos oxalacetato (OxA) para formar citrato (Cit). Os próximos intermediários são, respectivamente, cis-aconitato (CisA), isocitrato (IsoC), oxalosuccinato (OxS), alfacetoglutarato (AKG), succinil-CoA (ScoA), succinato (Suc), fumarato (Fum), malato (Mal), e assim o oxalacetato é regenerado. O processo pode ser acompanhado em maior detalhe, com os dois carbonos do grupo acetil da acetil-CoA mostrados em azul sendo incorporados, de citrato a succinil-CoA, sendo que então não é mais possível distinguir esses carbonos incorporados, pois o succinato é uma molécula simétrica. As enzimas envolvidas nessa rota metabólica correspondem a citrato sintase (1), aconitase (2), isocitrato desidrogenase (3), alfacetoglutarato desidrogenase (4), succinil-CoA sintetase (5), succinato desidrogenase (6), fumarase (7), e malato desidrogenase (8). Coenzimas (CoA-SH, NAD+, NADH + H+, FAD, FADH2, ATjyP jyor GTP and ADP or Gjyjyj CO2 e H2O foram omitidas nessas representações. As produções de NADH e FADH2 das formas oxidadas dessas coenzimas são representadas, respectivamente, como “2H” e “[2H]” liberados no decorrer da via metabólica. A produção de ATP ou GTP de ADP ou GDP é mostrada pela liberação de fosfato de alta energia “~P”.

A influência do ciclo de Krebs no processo da respiração celular começa com a glicólise, processo ocorrido no citoplasma de uma célula, onde a glicose, obtida através dos alimentos ingeridos, passa por uma série de dez reações químicas que culminam na formação de duas moléculas de ácido pirúvico. É a partir desse ponto que começa a participação do ciclo de Krebs na respiração propriamente dita.

O ciclo de Krebs ocorre dentro da mitocôndria, logo as moléculas de ácido pirúvico têm que entrar nela. Esse processo só ocorre quando há moléculas de oxigênio suficientes para cada molécula de glicose; se há, na entrada do ácido pirúvico na mitocôndria faz com que o oxigênio reaja com o ácido formando gás carbônico e libera os elétrons dos átomos de hidrogênio presentes na fórmula da glicose.Esses elétrons são transportados pelo NADH e o FADH, duas moléculas transportadoras.

Os elétrons então se responsabilizam pela união de mais um átomo de fósforo, com uma molécula de adenosina difosfato (ADP) formando a adenosina trifosfato, o ATP.

Esta molécula de ATP então é que fornecerá a energia para a vida da célula e o transporte ativo de substâncias pelo corpo.

Os compostos intermediários do ciclo de Krebs podem ser utilizados como precursores em vias biossintéticas: oxaloacetato e α-cetoglutarato vão formar respectivamente aspartato e glutamato. A eventual retirada desses intermediários pode ser compensada por reações que permitem restabelecer o seu nível. Entre essas reações, que são chamadas de anapleróticas por serem reações de preenchimento, a mais importante é a que leva à formação de oxaloacetato a partir do piruvato e que é catalisada pela piruvato carboxilase. O oxaloacetato além de ser um intermediário do ciclo de Krebs, participa também da gliconeogênese. A degradação de vários aminoácidos também produz intermediários do ciclo de Krebs, funcionando como reações anapleróticas adicionais.

O ciclo do ácido cítrico para o fluxo de átomos de carbono do piruvato e o regula em dois níveis: a conversão de piruvato em acetil-CoA, o material inicial do ciclo (a reação do complexo do piruvato desidrogenase), e a entrada de acetil-CoA no ciclo (a reação da citrato sintase. Como o piruvato não é a única fonte de acetil-CoA (a maioria das células pode obter acetil-CoA pela oxidação dos ácidos graxos e de certos aminoácidos), a possibilidade de obtenção de intermediários dessas outras vias é muito importante na regulação da oxidação do piruvato e do ciclo do ácido cítrico. O ciclo também é regulado na altura da reação da isocitrato desidrogenase e na reação da α-cetoglutarato desidrogenase.[4]

  • Glicólise
  • Respiração
  • Bicicleta de Krebs (coordenação do ciclo da ureia com o ciclo de Krebs)

  1. Lehninger
  2. Bonafe, C. F. S.; Bispo, J. A. C.; de Jesus, M. B. (2018). The Polygonal Model: A Simple Representation of Biomolecules as a Tool for Teaching Metabolism. Biochemistry and Molecular Biology Education. 46: 66-75. DOI - 10.1002/bmb.21093.
  3. Bonafe, Carlos (23 de Outubro de 2019). «Introdução Modelo Poligonal - PARTE 2: Ciclo de Krebs e Estrutura das Biomoléculas Participantes». YouTube 
  4. LEHNINGER, Albert Lester; NELSON, David L; COX, Michael. Princípios da Bioquímica. 2.ed. São Paulo: Sarvier, 1995.

 

O Commons possui uma categoria com imagens e outros ficheiros sobre Ciclo de Krebs

  • «A lógica química do ciclo de Krebs» 

 

O Commons possui uma categoria com imagens e outros ficheiros sobre Ciclo de Krebs

  • «Ciclo de Krebs, câncer e imunidade» 
  •   Portal da saúde
  •   Portal da bioquímica

Obtida de "https://pt.wikipedia.org/w/index.php?title=Ciclo_de_Krebs&oldid=60089699"