In general, hypermethylation (high levels of methylation) of dna in eukaryotes

  1. Lowdon RF, Jang HS, Wang T. Evolution of epigenetic regulation in vertebrate genomes. Trends Genet TIG. 2016;32:269–83.

    Article  PubMed  CAS  Google Scholar 

  2. Gilbert SF, Epel D. Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sunderland: Sinauer Associates; 2008.

    Google Scholar 

  3. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.

    Article  PubMed  CAS  Google Scholar 

  4. Illingworth RS, Bird AP. CpG islands—‘a rough guide’. FEBS Lett. 2009;583:1713–20.

    Article  PubMed  CAS  Google Scholar 

  5. Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, et al. Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol. 2009;16:564–71.

    Article  PubMed  CAS  Google Scholar 

  6. Bogdanović O, Smits AH, de la Calle Mustienes E, Tena JJ, Ford E, Williams R, et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet. 2016;48:417–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15:1.

    Article  CAS  Google Scholar 

  8. Tomazou EM, Sheffield NC, Schmidl C, Schuster M, Schönegger A, Datlinger P, et al. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 2015;10:1082–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE. 2011;6:e14524 (Papavasiliou N, editor).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ball MP, Li JB, Gao Y, Lee J-H, LeProust EM, Park I-H, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009;27:361–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL, et al. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genom. 2015;16:49.

    Article  CAS  Google Scholar 

  12. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:r54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hernando-Herraez I, Heyn H, Fernandez-Callejo M, Vidal E, Fernandez-Bellon H, Prado-Martinez J, et al. The interplay between DNA methylation and sequence divergence in recent human evolution. Nucleic Acids Res. 2015;43:8204–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhong X. Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. New Phytol. 2016;210:76–80.

    Article  PubMed  CAS  Google Scholar 

  15. Varriale A. DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int J Evol Biol. 2014;2014:e475981.

    Article  CAS  Google Scholar 

  16. Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, et al. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol. 2016;25:1785–800.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang L, Zhang J, Wang J-J, Wang L, Zhang L, Li G, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153:773–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153:759–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24:604–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328:916–9.

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Wang Z, Tang S, Zhao Y, Zhao J. Genome-wide mapping of DNA methylation in Nile tilapia. Hydrobiologia. 2016;791:247–57.  https://doi.org/10.1007/s10750-016-2823-6

    Article  CAS  Google Scholar 

  22. Sun L-X, Wang Y-Y, Zhao Y, Wang H, Li N, Ji XS. Global DNA methylation changes in Nile tilapia gonads during high temperature-induced masculinization. PLoS ONE. 2016;11:e0158483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nätt D, Rubin C-J, Wright D, Johnsson M, Beltéky J, Andersson L, et al. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genom. 2012;13:59.

    Article  CAS  Google Scholar 

  24. Derks MFL, Schachtschneider KM, Madsen O, Schijlen E, Verhoeven KJF, van Oers K. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genom. 2016;17:332.

    Article  CAS  Google Scholar 

  25. Cao J, Wei C, Liu D, Wang H, Wu M, Xie Z, et al. DNA methylation landscape of body size variation in sheep. Sci Rep. 2015;5:13950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Couldrey C, Brauning R, Bracegirdle J, Maclean P, Henderson HV, McEwan JC. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle. PLoS ONE. 2014;9:e101853 (Niemann H, editor).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Choi M, Lee J, Le MT, Nguyen DT, Park S, Soundrarajan N, et al. Genome-wide analysis of DNA methylation in pigs using reduced representation bisulfite sequencing. DNA Res. 2015;22:343–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Janowitz Koch I, Clark MM, Thompson MJ, Deere-Machemer KA, Wang J, Duarte L, et al. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol. 2016;25:1838–55.

    Article  PubMed  CAS  Google Scholar 

  29. Hernando-Herraez I, Prado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, Hvilsom C, et al. Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet. 2013;9:e1003763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lea AJ, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol Ecol. 2016;25:1681–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tine M, Kuhl H, Gagnaire P-A, Louro B, Desmarais E, Martins RST, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun. 2014;5:5770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Louro B, Power DM, Canario AVM. Advances in European sea bass genomics and future perspectives. Mar Genomics. 2014;18:71–5.

    Article  PubMed  Google Scholar 

  33. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hontelez S, van Kruijsbergen I, Georgiou G, van Heeringen SJ, Bogdanovic O, Lister R, et al. Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun. 2015;6:10148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li X, Liu Y, Salz T, Hansen KD, Feinberg A. Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver. Genome Res. 2016;26:1730–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Stewart AJ, Hannenhalli S, Plotkin JB. Why transcription factor binding sites are ten nucleotides long. Genetics. 2012;192:973–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Schlosberg CE, VanderKraats ND, Edwards JR. Modeling complex patterns of differential DNA methylation that associate with gene expression changes. Nucleic Acids Res. 2017;45:5100–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. VanderKraats ND, Hiken JF, Decker KF, Edwards JR. Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes. Nucleic Acids Res. 2013;41:6816–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Unoki M, Nakamura Y. Methylation at CpG islands in intron 1 of EGR2 confers enhancer-like activity. FEBS Lett. 2003;554:67–72.

    Article  PubMed  CAS  Google Scholar 

  40. Hashimoto S, Ogoshi K, Sasaki A, Abe J, Qu W, Nakatani Y, et al. Coordinated changes in DNA methylation in antigen-specific memory CD4 T cells. J Immunol. 2013;190:4076–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sellars M, Huh JR, Day K, Issuree PD, Galan C, Gobeil S, et al. Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nat Immunol. 2015;16:746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hayami Y, Iida S, Nakazawa N, Hanamura I, Kato M, Komatsu H, et al. Inactivation of the E3/LAPTm5 gene by chromosomal rearrangement and DNA methylation in human multiple myeloma. Leukemia. 2003;17:1650–7.

    Article  PubMed  CAS  Google Scholar 

  43. Yoshino Y, Ozaki Y, Yamazaki K, Sao T, Mori Y, Ochi S, et al. DNA Methylation changes in intron 1 of triggering receptor expressed on myeloid cell 2 in Japanese Schizophrenia subjects. Front Neurosci. 2017 [cited 2017 Dec 1];11. https://www.frontiersin.org/articles/10.3389/fnins.2017.00275/full.

  44. Kim J, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Capdevila OS, Wang Y, et al. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med. 2012;185:330–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li H, Chen D, Zhang J. Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS ONE. 2012;7:e46784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Majewski J, Ott J. Distribution and characterization of regulatory elements in the human genome. Genome Res. 2002;12:1827–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hartono SR, Korf IF, Chédin F. GC skew is a conserved property of unmethylated CpG island promoters across vertebrates. Nucleic Acids Res. 2015;43:9729–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Park SG, Hannenhalli S, Choi SS. Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals. BMC Genomics. 2014 [cited 2018 Feb 1];15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085337/.

  49. Song X, Huang F, Liu J, Li C, Gao S, Wu W, et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res Int J Rapid Publ Rep Genes Genomes. 2017;24:445–57.

    CAS  Google Scholar 

  50. Takayama S, Dhahbi J, Roberts A, Mao G, Heo S-J, Pachter L, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014;24:821–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lou S, Lee H-M, Qin H, Li J-W, Gao Z, Liu X, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15:408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yu P, Xiao S, Xin X, Song C-X, Huang W, McDee D, et al. Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation. Genome Res. 2013;23:352–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rountree MR, Selker EU. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 1997;11:2383–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jeong Y-M, Mun J-H, Lee I, Woo JC, Hong CB, Kim S-G. Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol. 2006;140:196–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rose AB. Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol. 2008;326:277–90.

    PubMed  CAS  Google Scholar 

  56. Hoivik EA, Bjanesoy TE, Mai O, Okamoto S, Minokoshi Y, Shima Y, et al. DNA methylation of intronic enhancers directs tissue-specific expression of steroidogenic factor 1/adrenal 4 binding protein (SF-1/Ad4BP). Endocrinology. 2011;152:2100–12.

    Article  PubMed  CAS  Google Scholar 

  57. Rico D, Martens JH, Downes K, Carrillo-de-Santa-Pau E, Pancaldi V, Breschi A, et al. Comparative analysis of neutrophil and monocyte epigenomes. bioRxiv. 2017;237784.

  58. Sharma G, Sowpati DT, Singh P, Khan MZ, Ganji R, Upadhyay S, et al. Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection. Sci Rep. 2016;6:25006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Vernimmen D, Bickmore WA. The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet. 2015;31:696–708.

    Article  PubMed  CAS  Google Scholar 

  60. Natarajan A, Yardımcı GG, Sheffield NC, Crawford GE, Ohler U. Predicting cell-type–specific gene expression from regions of open chromatin. Genome Res. 2012;22:1711–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Landolin JM, Johnson DS, Trinklein ND, Aldred SF, Medina C, Shulha H, et al. Sequence features that drive human promoter function and tissue specificity. Genome Res. 2010;20:890–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Weigelt K, Moehle C, Stempfl T, Weber B, Langmann T. An integrated workflow for analysis of ChIP-chip data. BioTechniques. 2008;45:131–2, 134, 136 passim.

  63. Akan P, Deloukas P. DNA sequence and structural properties as predictors of human and mouse promoters. Gene. 2008;410:165–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Karlsson K, Lönnerberg P, Linnarsson S. Alternative TSSs are co-regulated in single cells in the mouse brain. Mol Syst Biol. 2017;13:930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bock C, Tomazou EM, Brinkman AB, Müller F, Simmer F, Gu H, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol. 2010;28:1106–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yong W-S, Hsu F-M, Chen P-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ziller MJ, Stamenova EK, Gu H, Gnirke A, Meissner A. Targeted bisulfite sequencing of the dynamic DNA methylome. Epigenetics Chromatin. 2016;9:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Metzger DCH, Schulte PM. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc Biol Sci. 2017. https://doi.org/10.1098/rspb.2017.1667.

    PubMed  Article  PubMed Central  Google Scholar 

  70. Moghadam HK, Johnsen H, Robinson N, Andersen Ø, Jørgensen EH, Johnsen HK, et al. Impacts of early life stress on the methylome and transcriptome of Atlantic Salmon. Sci Rep. 2017;7:5023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chatterjee A, Ozaki Y, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics. 2013;8:979–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Navarro-Martín L, Blázquez M, Viñas J, Joly S, Piferrer F. Balancing the effects of rearing at low temperature during early development on sex ratios, growth and maturation in the European sea bass (Dicentrarchus labrax). Aquaculture. 2009;296:347–58.

    Article  Google Scholar 

  73. Marco-Sola S, Sammeth M, Guigó R, Ribeca P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods. 2012;9:1185–8.

    Article  PubMed  CAS  Google Scholar 

  74. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 2014;42:e91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Klughammer J, Datlinger P, Printz D, Sheffield NC, Farlik M, Hadler J, et al. Differential DNA methylation analysis without a reference genome. Cell Rep. 2015;13:2621–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20.

    Article  CAS  Google Scholar 

  78. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinform. 2009;10:232.

    Article  CAS  Google Scholar 

  79. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS ONE. 2013;8:e81148 (El-Maarri O, editor).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. https://www.R-project.org.

  81. RStudio Team. RStudio: integrated development environment for R. Boston, MA: RStudio, Inc.; 2015. http://www.rstudio.com/.

  82. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li S, Garrett-Bakelman FE, Akalin A, Zumbo P, Levine R, To BL, et al. An optimized algorithm for detecting and annotating regional differential methylation. BMC Bioinform. 2013;14:S10.

    Article  Google Scholar 

  85. Pagès H. BSgenome: infrastructure for biostrings-based genome data packages and support for efficient SNP representation. 2016. https://bioconductor.org/packages/release/bioc/html/BSgenome.html.

  86. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9:e1003118 (Prlic A, editor).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Adler D. vioplot: violin plot. 2005 [cited 2016 Aug 26]. https://cran.r-project.org/web/packages/vioplot/index.html.

  88. McLeay RC, Bailey TL. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinform. 2010;11:165.

    Article  CAS  Google Scholar 

  89. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015;43:W39–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mathelier A, Fornes O, Arenillas DJ, Chen C, Denay G, Lee J, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–5.

    Article  PubMed  CAS  Google Scholar 

  91. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–5.

    Article  PubMed  CAS  Google Scholar 

  92. Akalin A, Franke V, Vlahoviček K, Mason CE, Schübeler D. Genomation: a toolkit to summarize, annotate and visualize genomic intervals. Bioinformatics. 2015;31:1127–9.

    Article  PubMed  CAS  Google Scholar 


Page 2

Tissue Factors SS d.f. F value p value
Muscle Relative distance 5.18 1 1.872 0.173
Methylation status 10.76 1 3.885 0.051
Interaction of relative distance with methylation status 17.35 1 6.264 0.013
Residuals 387.65 140   
Testis Relative distance 7.31 1 1.855 0.176
Methylation status 121.86 1 30.900 0.000
Interaction of relative distance with methylation status 22.8 1 5.781 0.018
Residuals 540.28 137   

  1. The effects were tested using analysis of covariance, and the statistically significant ones are shown in italics
  2. d.f. degrees of freedom, SS sums of squares