Glycylcyclines are __________ against bacteria that have become resistant to tetracyclines.

1. Acar J F. Consequences of bacterial resistance to antibiotics in medical practice. Clin Infect Dis. 1997;24:S17–S18. [PubMed] [Google Scholar]

2. Acar J F, Bouanchaud D H, Chabbert Y A. Evolutionary aspects of plasmid mediated resistance in a hospital environment. In: Drews J, Hogerauers G, editors. Topics in infectious diseases. R-factors: their properties and possible control. Vol. 2. Vienna, Austria: Springer-Verlag; 1977. pp. 5–23. [Google Scholar]

3. Agalar C, Usubutun S, Turkyilmaz R. Ciprofloxacin and rifampicin versus doxycycline and rifampicin in the treatment of brucellosis. Eur J Clin Microbiol Infect Dis. 1999;18:535–538. [PubMed] [Google Scholar]

4. Akiba T, Koyama K, Ishiki Y, Kimura S, Fukushima T. On the mechanism of the development of multiple-drug-resistant clones of Shigella. Jpn J Microbiol. 1960;4:219. [PubMed] [Google Scholar]

5. Alekshum M N, Levy S B. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulation. Antimicrob Agents Chemother. 1997;41:2067–2075. [PMC free article] [PubMed] [Google Scholar]

6. Alonso A, Marinez J L. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1997;41:2119–2121. [Google Scholar]

7. American Society for Microbiology. Report of the ASM task force on antibiotic resistance. Antimicrob Agents Chemother. 1995;1995(Suppl.):1–23. [PubMed] [Google Scholar]

8. Andersen S R, Sandaa R A. Distribution of tetracycline resistance determinants among gram-negative bacteria isolated from polluted and unpolluted marine sediments. Appl Environ Microbiol. 1994;60:908–912. [PMC free article] [PubMed] [Google Scholar]

9. Andres M T, Chung W O, Roberts M C, Fierro J F. Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens isolated in Spain. Antimicrob Agents Chemother. 1998;42:3022–3023. [PMC free article] [PubMed] [Google Scholar]

10. Antonio M A D, Hawes S E, Hillier S L. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis. 1999;180:1950–1956. [PubMed] [Google Scholar]

11. Aoki T, Satoh T, Kitao T. New tetracycline resistance determinant on R-plasmids from Vibrio anguillarum. Antimicrob Agents Chemother. 1987;31:1446–1449. [PMC free article] [PubMed] [Google Scholar]

12. Atkinson B A, Abu-Al-Jaibat A, LeBlanc D J. Antibiotic resistance among enterococci isolated from clinical specimens between 1953 and 1954. Antimicrob Agents Chemother. 1997;41:1598–1600. [PMC free article] [PubMed] [Google Scholar]

13. Banai M, LeBlanc D J. Genetic, molecular, and functional analysis of Streptococcus faecalis plasmid pJH1. J Bacteriol. 1983;155:1094–1104. [PMC free article] [PubMed] [Google Scholar]

14. Barbosa T M, Scott K P, Flint H J. Evidence for recent intergeneric transfer of new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolens, and the occurrence of tet(O) in ruminal bacteria. Environ Microbiol. 1999;1:53–64. [PubMed] [Google Scholar]

15. Barden T C, Buckwalter B L, Testa R T, Petersen P J, Lee V J. “Glycylcyclines.” 3. 9-Aminodoxycyclinecarboxamides. J Med Chem. 1994;37:3205–3211. [PubMed] [Google Scholar]

16. Benveniste R, Davies J. Aminoglycoside antibiotic-inactivation enzymes in actinomycetes similar to those present in clinical isolates of antibiotic resistant bacteria. Proc Natl Acad Sci USA. 1973;172:3628–3632. [PMC free article] [PubMed] [Google Scholar]

17. Bergeron J, Ammirati M, Danley D, James L, Norcia M, Retsema J, Strick C A, Su W G, Sutcliffe J, Wondrack L. Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob Agents Chemother. 1996;40:2226–2228. [PMC free article] [PubMed] [Google Scholar]

18. Bertram J, Stratz M, Durre P. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol. 1991;173:443–448. [PMC free article] [PubMed] [Google Scholar]

19. Biggs C E, Fratamico P M. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother. 1999;43:846–849. [PMC free article] [PubMed] [Google Scholar]

20. Blackwood R K. Structure determination and total synthesis of the tetracyclines. In: Hlavka J J, Boothe J H, editors. Handbook of experimental pharmacology. Vol. 78. Berlin, Germany: Springer-Verlag KG; 1985. pp. 59–136. [Google Scholar]

21. Bolhuis H, van Veen H W, Poolman B, Driessen A J M, Konings W N. Mechanisms of multidrug transporters. FEMS Microbiol Rev. 1997;21:55–84. [PubMed] [Google Scholar]

22. Boucher H W, Wennersten C B, Eliopoulos G M. In vitro activities of the glycylcycline GAR-936 against gram-positive bacteria. Antimicrob Agents Chemother. 2000;44:2225–2229. [PMC free article] [PubMed] [Google Scholar]

23. Bremon A R, Ruiz-Tovar M, Gorricho B P, de Torres P D, Rodgriguez R L. Non-hospital consumption of antibiotics in Spain: 1987–1997. J Antimicrob Chemother. 2000;45:395–400. [PubMed] [Google Scholar]

24. Brisson-Noel A, Arthur M, Courvalin P. Evidence for natural gene transfer from gram-positive cocci to Escherichia coli. J Bacteriol. 1988;170:1739–1745. [PMC free article] [PubMed] [Google Scholar]

25. Brown B A, Wallace R J, Onyi G. Activities of the glycylcyclines N,N-dimethylglycylamido-minocycline and N,N-dimethylglycylamido-6-demethyl-6-deoxytetracycline against Nocardia spp. and tetracycline-resistant isolates of rapidly growing mycobacteria. Antimicrob Agents Chemother. 1996;40:874–878. [PMC free article] [PubMed] [Google Scholar]

26. Brown J T, Roberts M C. Cloning and characterization of tetM from a Ureaplasma urealyticum strain. Antimicrob Agents Chemother. 1987;31:1852–1854. [PMC free article] [PubMed] [Google Scholar]

27. Brown M B, Roberts M C. Tetracycline resistance determinants in streptococcal species isolated from the bovine mammary gland. Vet Microb. 1991;29:173–180. , 1991. [PubMed] [Google Scholar]

28. Bunnag D, Karbwang J, Na-Bangchang K, Thanavibul A, Chittamas S, Harinasuta T. Quinine-tetracycline for multidrug resistant falciparum malaria. Southeast Asia J Trop Med Public Health. 1996;27:15–18. [PubMed] [Google Scholar]

29. Burdett V. Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem. 1991;266:2872–2877. [PubMed] [Google Scholar]

30. Burdett V. tRNA modification activity is necessary for Tet(M)-mediated tetracycline resistance. J Bacteriol. 1993;175:7209–7215. [PMC free article] [PubMed] [Google Scholar]

31. Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J Bacteriol. 1996;178:3246–3251. [PMC free article] [PubMed] [Google Scholar]

32. Burns J L, Wadsworthk C D, Barry J J, Goodall C P. Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob Agents Chemother. 1996;40:307–313. [PMC free article] [PubMed] [Google Scholar]

33. Butler M J, Friend E J, Hunter I S, Kaczmarek F S, Sugden D A, Warren M. Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus. Mol Gen Genet. 1989;215:231–238. [PubMed] [Google Scholar]

34. Buu-Hoi A, Le Bouguenec C, Horaud T. Genetic basis of antibiotic resistance in Aerococcus viridans. Antimicrob Agents Chemother. 1989;33:529–534. [PMC free article] [PubMed] [Google Scholar]

35. Caillaud F, Carlier C, Courvalin P. Physical analysis of the conjugative shuttle transposon Tn1545. Plasmid. 1987;17:58–60. [PubMed] [Google Scholar]

36. Charpentier E, Gerbaud G, Courvalin P. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene. 1993;131:27–34. [PubMed] [Google Scholar]

37. Charpentier E, Gerbaud G, Courvalin P. Presence of the Listeria tetracycline resistance gene tet(S) in Enterococcus faecalis. Antimicrob Agents Chemother. 1994;38:2330–2335. [PMC free article] [PubMed] [Google Scholar]

38. Charpentier E, Courvalin P. Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother. 1999;43:2103–2108. [PMC free article] [PubMed] [Google Scholar]

39. Charvalos E, Tselentis Y, Hamzehpour M M, Kohler T, Pechere J-C. Evidence for an efflux pump in multidrug-resistant Campylobacter jejuni. Antimicrob Agents Chemother. 1995;39:2019–2022. [PMC free article] [PubMed] [Google Scholar]

40. Chaslus-Dancla E, Lesage-Descauses M-C, Leroy-Setrin S, Marel J-L, Lafont J-P. Tetracycline resistance determinants, Tet B and Tet M detected in Pasteurella haemolytica and Pasteurella multocida from bovine herds. J Antimicrob Chemother. 1995;36:815–819. [PubMed] [Google Scholar]

41. Chopra I. Mode of action of the tetracyclines and the nature of bacterial resistance to them. In: Hlavka J J, Boothe J H, editors. Handbook of experimental pharmacology. Vol. 78. Berlin, Germany: Springer-Verlag KG; 1985. pp. 315–392. [Google Scholar]

42. Chopra I. Transport of tetracyclines into Escherichia coli requires a carboxamide group at the C2 position of the molecule. J Antimicrob Chemother. 1986;18:661–666. [PubMed] [Google Scholar]

43. Chopra I. Tetracycline analogs whose primary target is not the bacterial ribosome. Antimicrob Agents Chemother. 1994;38:637–640. [PMC free article] [PubMed] [Google Scholar]

44. Chopra I, Hawkey P M, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother. 1992;29:245–277. [PubMed] [Google Scholar]

45. Chung W O, Young K, Leng Z, Roberts M C. Mobile elements carrying ermF and tetQ genes in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother. 1999;44:329–335. [PubMed] [Google Scholar]

46. Chung W O, Werckenthin C, Schwarz S, Roberts M C. Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J Antimicrob Chemother. 1999;43:5–14. [PubMed] [Google Scholar]

47. Clermont D, Chesneau O, De Cespedes G, Horaud T. New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet(T) isolated from Streptococcus pyogenes A498. Antimicrob Agents Chemother. 1997;41:112–116. [PMC free article] [PubMed] [Google Scholar]

48. Clewell D B, Flannagan S E, Jaworski D D. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995;3:229–236. [PubMed] [Google Scholar]

49. Col N F, O'Connor R W. Estimating worldwide current antibiotic usage: report of task force 1. Rev Infect Dis. 1987;9:S232–S243. [PubMed] [Google Scholar]

50. Committee on Drug Use in Food Animals. The use of drugs in food animals, benefits and risks. Washington, D.C.: National Academy Press; 1999. [Google Scholar]

51. Cunha B A. Doxycycline re-visited. Arch Intern Med. 1999;159:1006–1007. [PubMed] [Google Scholar]

52. Dancer S J, Shears P, Platt D J. Isolation and characterization of coliforms from glacial ice and water in Canada's high arctic. J Appl Microbiol. 1997;82:597–609. [PubMed] [Google Scholar]

53. Dantley K A, Dannelly H K, Burdett V. Binding interaction between Tet(M) and the ribosome: requirements for binding. J Bacteriol. 1998;180:4089–4092. [PMC free article] [PubMed] [Google Scholar]

54. Davey P G, Bax R P, Newey J, Reeves D, Rutherford D, Slack R, Warren R E, Watt B, Wilson J. Growth in the use of antibiotics in the community in England and Scotland in 1980–93. B Med J. 1996;312:613. [PMC free article] [PubMed] [Google Scholar]

55. Davis M A, Hancock D D, Besser T E, Rice D H, Gay J M, Gay C, Gearhart L, DiGiacomo R. Changes in antimicrobial resistance among Salmonella enterica serovar typhimurium isolates from humans and cattle in the northwestern United States, 1982–1997. Emerg Infect Dis. 1999;5:802–806. [PMC free article] [PubMed] [Google Scholar]

56. Dax S L. Antibacterial chemotherapeutic agents. London, United Kingdom: Blackie Academic and Professional; 1997. [Google Scholar]

57. de Barbeyrac B, Dutilh B, Quentin C, Renaudin H, Bebear C. Susceptibility of Bacteroides ureolyticus to antimicrobial agents and identification of a tetracycline resistance determinant related to tetM. J Antimicrob Chemother. 1991;27:721–731. [PubMed] [Google Scholar]

58. Debets-Ossenkopp Y J, Herscheid A J, Pot R G J, Kuipers E J, Kusters J G, Vandenbroucke-Grauls C M J E. Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxycillin, tetracycline and trovafloxacin in the Netherlands. J Antimicrob Chemother. 1999;43:511–515. [PubMed] [Google Scholar]

59. DePaola A, Flynn P A, McPherarson R M, Levy S B. Phenotypic and genotypic characterization of tetracycline- and oxytetracycline-resistant Aeromonas hydrophila from cultured channel catfish (Ictalurus punctatus) and their environments. Appl Environ Microbiol. 1988;54:1861–1863. [PMC free article] [PubMed] [Google Scholar]

60. DePaola A, Hill W E, Harrell F M. Oligonucleotide probe determination of tetracycline-resistant bacteria isolated from catfish ponds. Mol Cell Probes. 1993;7:345–348. [PubMed] [Google Scholar]

61. DePaola A, Roberts M C. Class D and E tetracycline resistance determinants in gram-negative catfish pond bacteria. Mol Cell Probes. 1995;9:311–313. [PubMed] [Google Scholar]

62. De Rossi E, Blokpoel M C J, Cantoni R, Branzoni M, Riccardi G, Young D B, De Set K A L, Ciferri O. Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob Agents Chemother. 1998;42:1931–1937. [PMC free article] [PubMed] [Google Scholar]

63. Dittrich W, Schrempf H. The unstable tetracycline resistance gene of Streptomyces lividans 1326 encodes a putative protein with similarities to translational elongation factors and Tet (M) and Tet (O) proteins. Antimicrob Agents Chemother. 1992;36:1119–1124. [PMC free article] [PubMed] [Google Scholar]

64. Doern G V, Brueggemann A B, Huynh H, Wingert E, Rhombert P. Antimicrobial resistance with Streptococcus pneumoniae in the United States, 1997–98. Emerg Infect Dis. 1999;5:757–765. [PMC free article] [PubMed] [Google Scholar]

65. Doran J L, Pang Y, Mdluli K E, Moran A J, Victor T C, Stokes R W, van Helden E, Roberts M C, Nano F E. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin Diagn Lab Immunol. 1997;4:23–32. [PMC free article] [PubMed] [Google Scholar]

66. Doyle D, McDowall K J, Bulter M J, Hunter I S. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol. 1991;5:2923–2933. [PubMed] [Google Scholar]

67. Edlind T D. Protein synthesis as a target for antiprotozoal drugs. In: Coombs G, North M, editors. Biochemical protozoology. London, United Kingdom: Taylor & Francis; 1991. pp. 569–586. [Google Scholar]

68. Eliopoulos G M, Wennersten C B, Cole G, Moellering R C. In vitro activities of two glycylcyclines against gram-positive bacteria. Antimicrob Agents Chemother. 1994;38:534–541. [PMC free article] [PubMed] [Google Scholar]

69. Facinelli B, Roberts M C, Giovanetti E, Casolari C, Fabio U, Varaldo P E. Genetic basis of tetracycline resistance in food borne isolates of Listeria innocua. Appl Environ Microbiol. 1993;59:614–616. [PMC free article] [PubMed] [Google Scholar]

70. Falkow S. Infectious multiple drug resistance. London, United Kingdom: Pion Ltd.; 1975. [Google Scholar]

71. Felmingham D, Gruneberg R N the Alexander Project Group. The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother. 2000;45:191–203. [PubMed] [Google Scholar]

72. Fey P D, Safranek T J, Rupp M E, Dunne E F, Ribot E, Iwen P C, Bradford P A, Angulo F J, Hinrichs S H. Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N Engl J Med. 2000;342:1242–1249. [PubMed] [Google Scholar]

73. Finch R G. Tetracyclines. In: O'Grady F, Lambert H P, Finch R G, Greenwood D, editors. Antibiotic and chemotherapy. 7th ed. New York, N.Y: Churchill Livingstone Ltd.; 1997. pp. 469–484. [Google Scholar]

74. Fitzgerald G F, Clewell D B. A conjugative transposon (Tn919) in Streptococcus sanguis. Infect Immun. 1985;47:415–420. [PMC free article] [PubMed] [Google Scholar]

75. Flannagan S E, Zitzow L A, Su Y A, Clewell D B. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid. 1994;32:350–354. [PubMed] [Google Scholar]

76. Fletcher H M, Daneo-Moore L. A truncated Tn916-like element in a clinical isolates of Enterococcus faecium. Plasmid. 1992;27:155–160. [PubMed] [Google Scholar]

77. Fraise A P, Brenwald N, Andrews J M, Wise R. In-vitro activity of two glycylcyclines against enterococci resistant to other agents. J Antimicrob Chemother. 1995;35:877–881. [PubMed] [Google Scholar]

78. Franklin T J. Mode of action of the tetracyclines. In: Newton B A, Reynolds P E, editors. Biochemical studies of antimicrobial drugs. Sixteenth Symposium of the Society for General Microbiology. Cambridge, United Kingdom: Cambridge University Press; 1966. pp. 192–212. [Google Scholar]

79. Freeman C D, Nightingale C H, Quintiliani R. Minocycline: old and new therapeutic uses. Int J Antimicrob Agents. 1994;4:325–335. [PubMed] [Google Scholar]

80. Gales A C, Jones R N. Antimicrobial activity and spectrum of the new glycylcycline, GAR-936 tested against 1,203 recent clinical bacterial isolates. Diagn Microbiol Infect Dis. 2000;36:19–36. [PubMed] [Google Scholar]

81. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P. Multidrug resistance in Yersinia pestis by a transferable plasmid. N Engl J Med. 1997;337:677–680. [PubMed] [Google Scholar]

82. George A M, Hall R M, Stokes H W. Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology. 1995;141:1909–1920. [PubMed] [Google Scholar]

83. Georgetown University Center for Food and Nutrition Policy. Antibiotic use in animals: food safety and risk assessment. Conference proceedings. Washington, D.C.: Georgetown University; 1999. [Google Scholar]

84. Gillespie M T, Lyon B R, Loo L S L, Mathhews P R, Stewart P R, Skurray R A. Homologous direct repeat sequences associated with mercury, methicillin, tetracycline and trimethoprim resistance in Staphylococcus aureus. FEMS Microbiol Lett. 1987;43:165–171. [Google Scholar]

85. Gillespie M T, May J W, Skurray R. Detection of an integrated tetracycline resistance plasmid in the chromosome of methicillin-resistant Staphylococcus aureus. J Gen Microbiol. 1986;132:1723–1728. [PubMed] [Google Scholar]

86. Goldstein F W, Kitzis M D, Acar J F. N,N-Dimethylglycyl-amido derivative of minocycline and 6-demethyl-6-deoxytetracycline, two new glycylcyclines highly effective against tetracycline-resistant gram-positive cocci. Antimicrob Agents Chemother. 1994;38:2218–2220. [PMC free article] [PubMed] [Google Scholar]

87. Gotoh N, Tsujimoto H, Poole K, Yamagishi J-I, Nishino T. The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon. Antimicrob Agents Chemother. 1995;39:2567–2569. [PMC free article] [PubMed] [Google Scholar]

88. Graeme K A, Pollack C V. Antibiotic use in the emergency department. II. The aminoglycosides, macrolides, tetracyclines. Sulfa drugs, and urinary antiseptics. J Emerg Med. 1996;14:361–371. [PubMed] [Google Scholar]

89. Grave K, Lingaas E, Bangen M, Ronning M. Surveillance of the overall consumption of antibacterial drugs in humans, domestic animals and farmed fish in Norway in 1992 and 1996. J Antimicrob Chemother. 1999;43:243–252. [PubMed] [Google Scholar]

90. Guay G G, Tuckman M, Rothstein D M. Mutations in the tetA(B) gene that cause a change in substrate specificity of the tetracycline efflux pump. Antimicrob Agents Chemother. 1994;38:857–860. [PMC free article] [PubMed] [Google Scholar]

91. Gustafson R H, Kiser J S. Nonmedical uses of the tetracyclines. In: Hlavka J J, Boothe J H, editors. Handbook of experimental pharmacology. Vol. 78. Berlin, Germany: Springer-Verlag KG; 1985. pp. 405–446. [Google Scholar]

92. Hamilton-Miller J M T, Shah S. Activity of glycylcyclines CL 329998 and CL 331002 against minocycline-resistant and other strains of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1996;37:1171–1175. [PubMed] [Google Scholar]

93. Hartley D L, Hones K R, Tobian J A, LeBlanc D J, Macrina F L. Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect Immun. 1984;45:13–17. [PMC free article] [PubMed] [Google Scholar]

94. Hansen L M, McMurry L M, Levy S B, Hirsch D C. A new tetracycline resistance determinant, Tet H, from Pasteurella multocida specifying active efflux of tetracycline. Antimicrob Agents Chemother. 1993;37:2699–2705. [PMC free article] [PubMed] [Google Scholar]

95. Hatsu M, Sasaki T, Gomi S, Kodama Y, Sezaki M, Inouye S, Kondo S. A new tetracycline with antitumor activity: II the structural elucidation of SF2575. J Antibiot. 1992;45:325–330. [PubMed] [Google Scholar]

96. Hawley R J, Lee L N, LeBlanc D J. Effects of tetracycline on the streptococcal flora of periodontal pockets. Antimicrob Agents Chemother. 1980;17:372–378. [PMC free article] [PubMed] [Google Scholar]

97. Heur C, Hickman R K, Curiale M S, Hillen W, Levy S B. Constitutive expression of tetracycline resistance mediated by a Tn10-like element in Haemophilus parainfluenzae results from a mutation in the repressor gene. J Bacteriol. 1987;169:990–994. [PMC free article] [PubMed] [Google Scholar]

98. Higlander S K, Novick R P. Mutational and physiological analyses of plasmid pT181 functions expressing incompatibility. Plasmid. 1990;23:1–15. [PubMed] [Google Scholar]

99. Hillen W, Berens C. Mechanisms underlying expression of Tn10-encoded tetracycline resistance. Annu Rev Microbiol. 1994;48:345–369. [PubMed] [Google Scholar]

100. Hlavka J J, Ellestad G A, Chopra I. Tetracyclines. In: Kroschwitz J I, Howe-Grant M, editors. Kirk-Othmer encyclopedia of chemical technology. 4th ed. Vol. 3. New York, N.Y: John Wiley & Sons, Inc.; 1992. pp. 331–346. [Google Scholar]

101. Holmberg S D, Osterholm M T, Senger K A, Cohen M L. Drug-resistant Salmonella from animals fed antimicrobials. N Engl J Med. 1984;311:617. [PubMed] [Google Scholar]

102. Holmberg S D, Wells J G, Cohen M L. Animal-to-man transmissions of antimicrobial-resistant Salmonella: investigation of US outbreaks, 1971–1983. Science. 1984;225:833–835. [PubMed] [Google Scholar]

103. Horaud T, de Cerspedes G, Clermont D, David F, Delbos F. Variability of chromosomal genetic elements in streptococci. In: Dunny G M, Cleary P P, McKay L L, editors. Genetics and molecular biology of streptococci, lactococci and enterococci. Washington, D.C.: American Society for Microbiology; 1991. pp. 16–20. [Google Scholar]

104. Hosek G, Leschinksy D D, Irons S, Safranek T J. Multidrug-resistant Salmonella serotype Typhimurium—United States, 1996. Morb Mortal Wkly Rep. 1997;46:308–310. [PubMed] [Google Scholar]

105. Huang R, Gascoyne-Binzi D M, Hawkey P M, Yu M, Heritage J, Eley A. Molecular evolution of the tet(M) gene in Gardnerella vaginalis. J Antimicrob Chemother. 1997;40:561–565. [PubMed] [Google Scholar]

106. Hughes V M, Datta N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature. 1983;302:725–726. [PubMed] [Google Scholar]

107. Humbert P, Treffel P, Chapuis J F, Buchet S, Derancourt C, Agache P. The tetracyclines in dermatology. J Am Acad Dermatol. 1991;25:691–697. [PubMed] [Google Scholar]

108. Inamine J M, Burdett V. Structural organization of a 67-kilobase streptococcal conjugative element mediating multiple antibiotic resistance. J Bacteriol. 1985;161:620–626. [PMC free article] [PubMed] [Google Scholar]

109. Institute of Medicine, Division of Health Promotion and Disease Prevention. Report of a study. Human health risks with the subtherapeutic use of penicillin or tetracyclines in animal feed. Washington, D.C.: National Academy Press; 1998. [Google Scholar]

110. Iwaki, S., N. Tamura, T. Kimura-Someya, S. Nada, and A. Yamaguchi. Cysteine-scanning mutagenesis of transmembrane segments 4 and 5 of the Tn10-encoded metal-tetracycline/H+ antiporter reveals a permeability barrier in the middle of a transmembrane water-filled channel. J. Biol. Chem. 275:22704–22712. [PubMed]

111. Jahn G, Laufs R, Kaulfers P-M, Kolenda H. Molecular nature of two Haemophilus influenzae R factors containing resistance and the multiple integration of drug resistance transposons. J Bacteriol. 1979;138:584–597. [PMC free article] [PubMed] [Google Scholar]

112. Janknegt R, Lashof A O, Gould I M, van der Meer J W M. Antibiotic use in Dutch hospitals 1991–1996. J Antimicrob Chemother. 2000;45:251–256. [PubMed] [Google Scholar]

113. Johnson A P. GAR-936. Curr Opin Anti-infect Investig Drugs. 2000;2:164–170. [Google Scholar]

113a. Joint expert advisory committee on antibiotic resistance (JETACAR) The use of antibiotics in food-producing animals: antibiotic-resistant bacteria in animals and humans. Canberra, Australia: Commonwealth Department of Health and Aged Care and Commonwealth Department of Agriculture, Fisheries and Forestry; 1999. [Google Scholar]

114. Jones C E, Vyakrnam S, Eady E A, Cove J H, Cunliffe W J. Antibiotic resistant propionibacteria and acne: crisis or conundrum? J Investig Dermatol. 1996;108:381. [Google Scholar]

115. Jones C S, Osborne D J, Stanley J. Enterobacterial tetracycline resistance in relation to plasmid incompatibility. Mol Cell Probes. 1992;6:313–317. [PubMed] [Google Scholar]

116. Jones C S, Osborne D J, Stanley J. Cloning of a probe for a previously undescribed enterobacterial tetracycline resistance gene. Lett Appl Microbiol. 1992;15:106–108. [PubMed] [Google Scholar]

117. Reference deleted.

118. Joshi N, Miller D Q. Doxycycline revisited. Arch Intern Med. 1997;157:1421–1428. [PubMed] [Google Scholar]

119. Ji B, Sow S, Perani E, Lienhardt C, Diderot V, Grosset J. Bactericidal activity of a single-dose combination of ofloxacin plus minocycline, with or without rifampin, against Mycobacterium leprae in mice and in lepromatous patients. Antimicrob Agents Chemother. 1998;42:1115–1120. [PMC free article] [PubMed] [Google Scholar]

120. Kariuki S, Mirza N B, Wasteson Y, Senerwa D, Gathuma J M, Olsvik O. Tetracycline resistance genes in Kenyan hospital isolates of Salmonella typhimurium. APMIS. 1992;100:629–634. [PubMed] [Google Scholar]

121. Kauc L, Goodgal S H. Introduction of transposon Tn916 DNA into Haemophilus influenzae and Haemophilus parainfluenzae. J Bacteriol. 1989;171:6625–6628. [PMC free article] [PubMed] [Google Scholar]

122. Kehrenberg C, Werckenthin C, Schwarz S. Tn5706, a transposon-like element from Pasteurella multocida mediating tetracycline resistance. Antimicrob Agents Chemother. 1998;42:2116–2118. [PMC free article] [PubMed] [Google Scholar]

123. Kenny G E, Cartwright F D. Susceptibilities of Mycoplasma hominis, Mycoplasma pneumoniae, and Ureaplasma urealyticum to new glycylcyclines in comparison with those to older tetracyclines. Antimicrob Agents Chemother. 1994;38:2628–2632. [PMC free article] [PubMed] [Google Scholar]

124. Khan S A, Novick R P. Complete nucleotide sequence of pT181, a tetracycline resistance plasmid from Staphylococcus aureus. Plasmid. 1983;30:163–166. [PubMed] [Google Scholar]

125. Khachatourians G G. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Can Med Assoc J. 1998;159:1129–1136. [PMC free article] [PubMed] [Google Scholar]

126. Kimura T, Suzuki M, Sawai T, Yamaguchi A. Determination of a transmembrane segment using cysteine-scanning mutants of transposon Tn10-encoded metal-tetracycline/H+ antiporter. Biochemistry. 1996;35:15896–15899. [PubMed] [Google Scholar]

127. Kimura T, Ohnuma M, Sawai T, Yamaguchi A. Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling. J Biol Chem. 1997;272:580–585. [PubMed] [Google Scholar]

128. Kimura-Someya T, Iwaki S, Yamaguchi A. Site-directed chemical modification of cysteine-scanning mutants as to transmembrane segment II and its flanking regions of the Tn10-encoded metal-tetracycline/H+ antiporter reveals a transmembrane water-filled channel. J Biol Chem. 1998;273:32806–32811. [PubMed] [Google Scholar]

129. Kimura-Someya T, Iwaki S, Konishi S, Tamura N, Kubo Y, Yamaguchi A. Cysteine-scanning mutagenesis around transmembrane segments 1 and 11 and their flanking loop regions of Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem. 2000;275:18692–18697. [PubMed] [Google Scholar]

130. Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol. 1995;247:260–280. [PubMed] [Google Scholar]

131. Klein N C, Cunha B A. Tetracyclines. Med Clin North Am. 1995;79:789–801. [PubMed] [Google Scholar]

132. Knapp J S, Johnson S R, Zenilman J M, Roberts M C, Morse S A. High-level tetracycline resistance resulting from TetM in strains of Neisseria species, Kingella denitrificans, and Eikenella corrodens. Antimicrob Agents Chemother. 1988;32:765–767. [PMC free article] [PubMed] [Google Scholar]

133. Kobland J D, Gale G O, Gustafson R H, Simkins K L. Comparison of therapeutic versus subtherapeutic levels of chlortetracycline in the diet for selection of resistant Salmonella in experimentally challenged chickens. Poult Sci. 1987;66:1129–1137. [PubMed] [Google Scholar]

134. Konishi S, Iwaki S, Kimura-Someya T, Yamaguchi A. Cysteine-scanning mutagenesis around transmembrane segment VI of Tn10-encoded metal-tetracycline/H+ antiporter. FEBS Lett. 1999;461:315–318. [PubMed] [Google Scholar]

135. Kordick D L, Papich M G, Breitschwerdt E B. Efficacy of enrofloxacin or doxycycline for treatment of Bartonella henselae or Bartonella clarridgeiae infection in cats. Antimicrob Agents Chemother. 1997;41:2448–2455. [PMC free article] [PubMed] [Google Scholar]

136. Kiser J S. A perspective on the use of antibiotics in animal feeds. J Anim Sci. 1976;42:1058–1072. [PubMed] [Google Scholar]

137. Kucers A, McK. Bennett N. The use of antibiotics. 4th ed. Oxford, United Kingdom: Heinemann Medical; 1987. [Google Scholar]

138. Kwon D H, Kim J J, Lee M, Yamaoka Y, Kato M, Osato M S, El-Zaatari F A K, Graham D Y. Isolation and characterization of tetracycline-resistant clinical isolates of Helicobacter pylori. Antimicrob Agents Chemother. 2000;44:3203–3205. [PMC free article] [PubMed] [Google Scholar]

138a. Lacks S, Lopez A P, Greenberg B, Espinosa M. Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pSL1. J Mol Biol. 1986;192:753–765. [PubMed] [Google Scholar]

139. Lacroix J-M, Walker C B. Detection and incidence of the tetracycline resistance determinant tet(M) in the microflora associated with adult periodontitis. J Periodontol. 1993;66:102–108. [PubMed] [Google Scholar]

140. Le Bouguenec C, de Cespedes G, Horaud T. Presence of chromosomal elements resembling the composite structure Tn3701 in streptococci. J Bacteriol. 1988;172:727–734. [PMC free article] [PubMed] [Google Scholar]

141. Lee C, Langlois B E, Dawson K L. Detection of tetracycline resistance determinants in pig isolates from three herds with different histories of antimicrobial agent exposure. Appl Environ Microbiol. 1993;59:1467–1472. [PMC free article] [PubMed] [Google Scholar]

142. Lefevre F C, Lepargneur J P, Guion D, Bei S. Tetracycline-resistant Chlamydia trachomatis in Toulouse, France. Pathol Biol. 1997;45:376–378. [PubMed] [Google Scholar]

143. Leng Z, Riley D E, Berger R E, Krieger J N, Roberts M C. Distribution and mobility of the tetracycline resistant determinant Tet Q. J Antimicrob Chemother. 1997;40:551–559. [PubMed] [Google Scholar]

144. Levy S B. Resistance to the tetracyclines. In: Bryan L E, editor. Antimicrobial drug resistance. Orlando, Fla: Academic Press; 1984. pp. 191–240. [Google Scholar]

145. Levy S B. Tetracycline resistance determinants are widespread. ASM News. 1988;54:418–421. [Google Scholar]

146. Levy S B. The antibiotic paradox: how miracle drugs are destroying the miracle. New York, N.Y: Plenum Press; 1992. [Google Scholar]

147. Levy S B. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992;36:695–703. [PMC free article] [PubMed] [Google Scholar]

148. Levy S B, Fitzgerald G B, Macone A B. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N Engl J Med. 1976;295:583–588. [PubMed] [Google Scholar]

149. Levy S B, Buu-Hoi A, Marshall B. Transposon Tn10-like tetracycline resistance determinants in Haemophilus parainfluenzae. J Bacteriol. 1984;160:87–94. [PMC free article] [PubMed] [Google Scholar]

150. Levy S B, McMurry L M, Barbosa T M, Burdett V, Courvalin P, Hillen W, Roberts M C, Rood J I, Taylor D E. Nomenclature for new tetracycline resistance determinants. Antimicrob Agents Chemother. 1999;43:1523–1524. [PMC free article] [PubMed] [Google Scholar]

151. Levy S B, McMurry L M, Burdett V, Courvalin P, Hillen W, Roberts M C, Taylor D E. Nomenclature for tetracycline resistance determinants. Antimicrob Agents Chemother. 1989;33:1373–1374. [PMC free article] [PubMed] [Google Scholar]

152. Li L-Y, Shoemaker N B, Salyers A A. Location and characteristics of the transfer region of Bacteriodes conjugative transposon and regulation of transfer genes. J Bacteriol. 1995;177:4992–4999. [PMC free article] [PubMed] [Google Scholar]

153. Li X-Z, Livermore D M, Nikaido H. Role of efflux pumps in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol and norfloxacin. Antimicrob Agents Chemother. 1994;38:1732–1741. [PMC free article] [PubMed] [Google Scholar]

154. Li X-Z, Nikaido H, Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995;39:1948–1953. [PMC free article] [PubMed] [Google Scholar]

155. Lima A A M, Lima N L, Pinho M C, Barros E A, Jr, Teixeria M J, Marins M C V, Guerrant R I. High frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, streptomycin, chloramphenicol, and tetracycline isolated from patients with shigellosis in northeastern Brazil during the period 1988 to 1993. Antimicrob Agents Chemother. 1995;39:256–259. [PMC free article] [PubMed] [Google Scholar]

156. Reference deleted.

157. Lina G, Quaglia A, Reverdy M-E, LeClercq R, Vandenesch F, Etienne J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother. 1999;43:1062–1066. [PMC free article] [PubMed] [Google Scholar]

158. Linton A H. Antibiotic-resistant bacteria in animal husbandry. Br Med Bull. 1984;40:91–95. [PubMed] [Google Scholar]

159. Liss R H, Batchelor F R. Economic evaluations of antibiotic use and resistance—a perspective: report of task force 6. Rev Infect Dis. 1987;9(Suppl. 3):S297–S312. [PubMed] [Google Scholar]

160. Louie M, Louie L, Papia G, Talbot J, Lovgren M, Simor A E. Molecular analysis of the genetic variation among penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae serotypes in Canada. J Infect Dis. 1999;179:892–900. [PubMed] [Google Scholar]

161. Lucas C E, Balthazar J T, Hagman K E, Shager W M. The MtrR repressor binds the DNA sequence between the mtrR and the mtrC genes in Neisseria gonorrhoeae. J Bacteriol. 1997;179:4123–4128. [PMC free article] [PubMed] [Google Scholar]

162. Luna V A, Roberts M C. The presence of the tetO gene in a variety of tetracycline resistant Streptococcus pneumoniae serotypes from Washington State. J Antimicrob Chemother. 1998;42:613–619. [PubMed] [Google Scholar]

163. Luo Z-O, Farrand S K. Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J Bacteriol. 1999;181:618–626. [PMC free article] [PubMed] [Google Scholar]

164. Lyras D, Rood J I. Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens. Antimicrob Agents Chemother. 1996;40:2500–2504. [PMC free article] [PubMed] [Google Scholar]

165. Manavathu E K, Fernandez C L, Cooperman B S, Taylor D E. Molecular studies on the mechanism of tetracycline resistance mediated by Tet(O) Antimicrob Agents Chemother. 1990;34:71–77. [PMC free article] [PubMed] [Google Scholar]

166. Manganelli R, Romano L, Ricci S, Zazzi M, Pozzi G. Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid. 1995;34:48–57. [PubMed] [Google Scholar]

167. Manie T, Khan S, Brozel V S, Veith W J, Gouws P A. Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Lett Appl Microbiol. 1998;26:253–258. [PubMed] [Google Scholar]

168. Marshall B, Roberts M, Smith A, Levy S B. Homogeneity of tetracycline-resistance determinants in Haemophilus species. J Infect Dis. 1984;149:1028–1029. [PubMed] [Google Scholar]

169. Marshall B, Tachibana C, Levy S B. Frequency of tetracycline resistance determinant classes among lactose-fermenting coliforms. Antimicrob Agents Chemother. 1983;24:835–840. [PMC free article] [PubMed] [Google Scholar]

170. Martinez-Salazar J M, Alvarez G, Gomez-Eichelmann M C. Frequency of four classes of tetracycline resistance determinants in Salmonella and Shigella spp. clinical isolates. Antimicrob Agents Chemother. 1986;30:630–631. [PMC free article] [PubMed] [Google Scholar]

171. Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12:518–553. [PMC free article] [PubMed] [Google Scholar]

172. McCaig L F, Hughes J M. Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA. 1995;273:214–219. [PubMed] [Google Scholar]

173. McMurry L M, Levy S B. Tetracycline resistance in gram-positive bacteria. In: Fischetti V A, Novick R P, Ferretti J J, Portnoy D A, Rood J I, editors. Gram-positive pathogens. Washington, D.C.: American Society for Microbiology; 2000. pp. 660–677. [Google Scholar]

174. McNicholas P, Chopra I, Rothstein D M. Genetic analysis of the TetA(C) gene on plasmid pBR322. J Bacteriol. 1992;174:7926–7933. [PMC free article] [PubMed] [Google Scholar]

175. McNicholas P, McGlynn M, Guay G G, Rothstein D M. Genetic analysis suggests functional interactions between the N- and C-terminal domains of the TetA(C) efflux pump encoded by pBR322. J Bacteriol. 1995;177:5355–5357. [PMC free article] [PubMed] [Google Scholar]

176. Mendez B, Tachibana C, Levy S B. Heterogeneity of tetracycline resistance determinants. Plasmid. 1980;3:99–108. [PubMed] [Google Scholar]

177. Midolo P D, Korman M G, Turnidge J D, Lambert J R. Helicobacter pylori resistance to tetracycline. Lancet. 1996;347:1194–1195. [PubMed] [Google Scholar]

178. Reference deleted.

179. Mitscher L A. The chemistry of the tetracycline antibiotics. New York, N.Y: Marcel Dekker, Inc; 1978. [Google Scholar]

180. Moazed D, Noller H F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987;327:389–394. [PubMed] [Google Scholar]

181. Molbak K, Baggesen D L, Aarestrup F M, Ebbesen J M, Engberg J, Frydendahl K, Gerner-Smidt P, Petersen A M, Wegener H C. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype Typhimurum DT104 N. Engl J Med. 1999;341:1420–1425. [PubMed] [Google Scholar]

182. Morse S A, Johnson S J, Biddle J W, Roberts M C. High-level tetracycline resistance in Neisseria gonorrhoeae due to the acquisition of the tetM determinant. Antimicrob Agents Chemother. 1986;30:664–670. [PMC free article] [PubMed] [Google Scholar]

183. Naglich J G, Andrews R E., Jr Tn916-dependent conjugal transfer of pC194 and pUB110 from Bacillus subtillis into Bacillus thuringiensis subsp. israelensis. Plasmid. 1988;20:113–126. [PubMed] [Google Scholar]

184. Needham C, Rahman M, Dyke K G H, Noble W C. An investigation of plasmids from Staphylococcus aureus that mediate resistance to mupirocin and tetracycline. Microbiology. 1994;140:2577–2583. [PubMed] [Google Scholar]

185. Nelson M L, Park B H, Andrew J S, Georgian V A, Thomas B C, Levy S B. Inhibition of the tetracycline efflux antiport protein by 13-thio-substituted 5-hydroxy-6-deoxytetracyclines. J Med Chem. 1993;36:370–377. [PubMed] [Google Scholar]

186. Nelson M L, Levy S B. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother. 1999;43:1719–1724. [PMC free article] [PubMed] [Google Scholar]

187. Reference deleted.

188. Nesin M, Svec P, Lupski J R, Godson G N, Kreiswirth B, Kornblum J, Projan S J. Cloning and nucleotide sequence of a chromosomally encoded tetracycline resistance determinant, tetA(M), from a pathogenic, methicillin-resistant strain of Staphylococcus aureus. Antimicrob Agents Chemother. 1990;34:2273–2276. [PMC free article] [PubMed] [Google Scholar]

189. Ng L-K, Mulvery M R, Martin I, Peters G A, Johnson W. Genetic characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar Typhimurium DT104. Antimicrob Agents Chemother. 1999;43:3018–3021. [PMC free article] [PubMed] [Google Scholar]

190. Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1998;178:5853–5859. [PMC free article] [PubMed] [Google Scholar]

191. Nikaido H. Multiple antibiotic resistance and efflux. Curr Opin Microbiol. 1998;1:516–523. [PubMed] [Google Scholar]

192. Nikaido H, Thanassi D G. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluroquinolones as examples. Antimicrob Agents Chemother. 1993;37:1393–1399. [PMC free article] [PubMed] [Google Scholar]

193. Noah J W, Dolan M A, Babin P, Wollenzien P. Effects of tetracycline and spectinomycin on the tertiary structure of ribosomal RNA in the Escherichia coli 30S ribosomal subunit. J Biol Chem. 1999;274:16576–16581. [PubMed] [Google Scholar]

194. Nord C E, Lindmark A, Persson I. In vitro activity of DMG-Mino and DMG-DM Dot, two new glycylcyclines, against anaerobic bacteria. Eur J Clin Microbiol Infect Dis. 1993;12:784–786. [PubMed] [Google Scholar]

195. O'Brien T F the Members of Task Force 2. Resistance of bacteria to antibacterial agents: report of task force 2. Rev Infect Dis. 1987;9:S244–S260. [PubMed] [Google Scholar]

196. Oehler R, Polacek N, Steiner G, Barta A. Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1997;25:1219–1224. [PMC free article] [PubMed] [Google Scholar]

197. Oethinger M, Kern W V, Jellen-Ritter A S, McMurry L M, Levy S B. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother. 2000;44:10–13. [PMC free article] [PubMed] [Google Scholar]

198. Oliva B, Chopra I. Tet determinants provide poor protection against some tetracyclines: further evidence for division of tetracyclines into two classes. Antimicrob Agents Chemother. 1992;36:876–878. [PMC free article] [PubMed] [Google Scholar]

199. Oliva B, Gordon G, McNicholas P, Ellestad G, Chopra I. Evidence that tetracycline analogs whose primary target is not the bacterial ribosome cause lysis of Escherichia coli. Antimicrob Agents Chemother. 1992;36:913–919. [PMC free article] [PubMed] [Google Scholar]

200. Olsvik B, Olsen I, Tenover F C. Tet tetQ gene in bacteria isolated from patients with refractory periodontal disease. Oral Microbiol Immunol. 1994;9:251–255. [PubMed] [Google Scholar]

201. Olsvik B, Olsen I, Tenover F C. Detection of tet(M) and tet(O) using the polymerase chain reaction in bacteria isolated from patients with periodontal disease. Oral Microbiol Immun. 1995;10:87–92. [PubMed] [Google Scholar]

202. Orth P, Schnappinger D, Sum P-E, Ellestad G A, Hillen W, Saenger W, Hinrichs W. Crystal structure of the Tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline. J Mol Biol. 1999;285:455–461. [PubMed] [Google Scholar]

203. Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol. 2000;7:215–219. [PubMed] [Google Scholar]

204. Ouellette M, Kundig C. Microbial multidrug resistance. Int J Antimicrob Agents. 1997;8:179–187. [PubMed] [Google Scholar]

205. Paulsen I T, Brown M H, Skurray R A. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996;60:575–608. [PMC free article] [PubMed] [Google Scholar]

206. Pang Y, Bosch T, Roberts M C. Single polymerase chain reaction for the detection of tetracycline resistant determinants Tet K and Tet L. Mol Cell Probes. 1994;8:417–422. [PubMed] [Google Scholar]

207. Pang Y, Brown B A, Steingrube V A, Wallace R J, Jr, Roberts M C. Acquisition of gram-positive tetracycline resistance genes in Mycobacterium and Streptomyces species. Antimicrob Agents Chemother. 1994;38:1408–1412. [PMC free article] [PubMed] [Google Scholar]

208. Petersen P J, Jacobus N V, Weiss W J, Sum P E, Testa R T. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936) Antimicrob Agents Chemother. 1999;43:738–744. [PMC free article] [PubMed] [Google Scholar]

209. Poyart C, Celli J, Trieu-Cuot P. Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob Agents Chemother. 1995;39:500–506. [PMC free article] [PubMed] [Google Scholar]

210. Poyart C, Quesne G, Acar P, Berche P, Trieu-Cuot P. Characterization of the Tn916-like transposon Tn3872 on a strain of Abiotrophia defectiva (Streptococcus defectivus) causing sequential episodes of endocarditis in a child. Antimicrob Agents Chemother. 2000;44:790–793. [PMC free article] [PubMed] [Google Scholar]

211. Pradines B, Spiegel A, Rogier C, Tall A, Mosnier J, Fusai T, Trape J F, Parzy D. Antibiotics for prophylaxis of Plasmodium falciparum infections: in vitro activity of doxycycline against Senegalese isolates. Am J Trop Med Hyg. 2000;62:82–85. [PubMed] [Google Scholar]

212. Projan S J, Monod M, Narayanan C S, Dubnau D. Replication properties of pIM13, a naturally occurring plasmid found in Bacillus subtilis, and of its close relative pE5, a plasmid native to Staphylococcus aureus. J Bacteriol. 1987;169:5131–5139. [PMC free article] [PubMed] [Google Scholar]

213. Projan S J, Novick R. Comparative analysis of five related staphylococcal plasmids. Plasmid. 1988;19:203–221. [PubMed] [Google Scholar]

214. Pukrittayakamee S, Chantra A, Vanijanonta S, Clemens R, Looareesuwan S, White N J. Therapeutic responses to quinine and clindamycin in multidrug-resistant falciparum malaria. Antimicrob Agents Chemother. 2000;44:2395–2398. [PMC free article] [PubMed] [Google Scholar]

215. Rasmussen B A, Gluzman Y, Tally F P. Inhibition of protein synthesis occurring on tetracycline-resistant, TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines. Antimicrob Agents Chemother. 1994;38:1658–1660. [PMC free article] [PubMed] [Google Scholar]

216. Recchia G D, Hall R M. Gene cassettes: a new class of mobile element. Microbiology. 1995;141:3015–3027. [PubMed] [Google Scholar]

217. Reference deleted.

218. Reynes J P, Calmels T, Drocourt D, Tiragy G. Cloning, expression in Escherichia coli and nucleotide sequence of a tetracycline-resistance gene from Streptomyces rimosus. J Gen Microbiol. 1988;134:585–598. [PubMed] [Google Scholar]

219. Rice L B, Marshall S H, Carias L L. Tn5381, a conjugative transposon identifiable as a circular form in Enterococcus faecalis. J Bacteriol. 1992;174:7380–7315. [PMC free article] [PubMed] [Google Scholar]

220. Ridenhour M B, Fletcher H M, Mortensen J E, Daneo-Moore L. A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKQ10 in Enterococcus faecium. Plasmid. 1996;35:71–80. [PubMed] [Google Scholar]

221. Riesbeck K, Bredberg A, Forsgren A. Ciprofloxacin does not inhibit mitochondrial functions but other antibiotics do. Antimicrob Agents Chemother. 1990;34:167–169. [PMC free article] [PubMed] [Google Scholar]

222. Roberts M C. Gene transfer in the urogenital and respiratory tract. In: Levy S, Miller R V, editors. Gene transfer in the environment. New York, N.Y: McGraw-Hill Publishing Co.; 1989. pp. 347–375. [Google Scholar]

223. Roberts M C. Plasmids of Neisseria gonorrhoeae and other Neisseria species. Rev Clin Microbiol. 1989;2:S18–S23. [PMC free article] [PubMed] [Google Scholar]

224. Roberts M C. Plasmid-mediated Tet M in Haemophilus ducreyi. Antimicrob Agents Chemother. 1989;33:1611–1613. [PMC free article] [PubMed] [Google Scholar]

225. Roberts M C. Characterization of the Tet M determinant in urogenital and respiratory bacteria. Antimicrob Agents Chemother. 1990;34:476–478. [PMC free article] [PubMed] [Google Scholar]

226. Roberts M C. Tetracycline resistance in Peptostreptococcus species. Antimicrob Agents Chemother. 1991;35:1682–1684. [PMC free article] [PubMed] [Google Scholar]

227. Roberts M C. Epidemiology of tetracycline resistance determinants. Trends Microbiol. 1994;2:353–357. [PubMed] [Google Scholar]

228. Roberts M C. Tetracycline resistant determinants: mechanisms of action, regulation of expression, genetic mobility and distribution. FEMS Microbiol Rev. 1996;19:1–24. [PubMed] [Google Scholar]

229. Roberts M C. Genetic mobility and distribution of tetracycline resistance determinants. Ciba Found Symp. 1997;207:206–218. [PubMed] [Google Scholar]

230. Roberts M C. Oral bacteria: reservoirs for antibiotic resistance traits. APUA Newsl. 1997;15:1–6. [Google Scholar]

231. Roberts M C. APUA—Alliance for the prudent use of antibiotics. ASM News. 2000;66:108. [Google Scholar]

232. Roberts M C, Actis L A, Crosa J H. Molecular characterization of chloramphenicol resistant Haemophilus parainfluenzae and Haemophilus ducreyi. Antimicrob Agents Chemother. 1985;28:176–180. [PMC free article] [PubMed] [Google Scholar]

233. Roberts M C, Chung W, Roe D E. Characterization of tetracycline and erythromycin determinants in Treponema denticola. Antimicrob Agents Chemother. 1996;40:1690–1694. [PMC free article] [PubMed] [Google Scholar]

234. Roberts M C, Chung W, Roe D E, Xia M, Marquez C, Borthagaray G, Whittington W L, Holmes K K. Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. Antimicrob Agents Chemother. 1999;43:1367–1372. [PMC free article] [PubMed] [Google Scholar]

235. Roberts M C, Hillier S L. Genetic basis of tetracycline resistance in urogenital bacteria. Antimicrob Agents Chemother. 1990;34:261–264. [PMC free article] [PubMed] [Google Scholar]

236. Roberts M C, Hillier S L, Hale J, Holmes K K, Kenny G E. Tetracycline resistance and tetM in pathogenic urogenital bacteria. Antimicrob Agents Chemother. 1986;30:810–812. [PMC free article] [PubMed] [Google Scholar]

237. Roberts M C, Kenny G E. Dissemination of the tetM tetracycline resistance determinant to Ureaplasma urealyticum. Antimicrob Agents Chemother. 1986;29:350–352. [PMC free article] [PubMed] [Google Scholar]

238. Roberts M C, Kenny G E. Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis. J Bacteriol. 1987;169:3836–3839. [PMC free article] [PubMed] [Google Scholar]

239. Roberts M C, Knapp J S. Host range of the conjugative 25.2 Mdal tetracycline resistance plasmid from Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1988;32:488–491. [PMC free article] [PubMed] [Google Scholar]

240. Roberts M C, Knapp J S. Transfer frequency of various 25.2 Mdal TetM-containing plasmids in Neisseria gonorrhoeae. Sex Transm Dis. 1989;16:91–94. [PubMed] [Google Scholar]

241. Roberts M C, Lansciardi J. Transferable TetM in Fusobacterium nucleatum. Antimicrob Agents Chemother. 1990;34:1836–1838. [PMC free article] [PubMed] [Google Scholar]

242. Roberts M C, Leonard R B, Briselden A M, Schoenknecht F D, Coyle M B. Characterization of antibiotic resistant Corynebacterium striatum strains. J Antimicrob Chemother. 1992;30:463–474. [PubMed] [Google Scholar]

243. Roberts M C, McFarland L V, Mullany P, Mulligan M E. Characterization of the genetic basis of antibiotic resistance in Clostridium difficile. J Antimicrob Chemother. 1994;33:419–429. [PubMed] [Google Scholar]

244. Roberts M C, Moncla B J, Hillier S L. Characterization of unusual tetracycline-resistant gram-positive bacteria. Antimicrob Agents Chemother. 1991;35:2655–2657. [PMC free article] [PubMed] [Google Scholar]

245. Roberts M C, Pang Y, Riley D E, Hillier S L, Berger R, Krieger J N. Detection of Tet M and Tet O tetracycline resistance genes by polymerase chain reaction. Mol Cell Probes. 1993;7:387–393. [PubMed] [Google Scholar]

246. Roberts M C, Pang Y, Spencer R C, Winstanley T G, Brown B A, Wallace R J., Jr Tetracycline resistance in Moraxella (Branhamella) catarrhalis—demonstration of two clonal outbreaks using pulsed-field gel electrophoresis. Antimicrob Agents Chemother. 1991;35:2453–2455. [PMC free article] [PubMed] [Google Scholar]

247. Roberts M C, Smith A L. Molecular characterization of “plasmid-free” antibiotic resistant Haemophilus influenzae. J Bacteriol. 1980;144:476–479. [PMC free article] [PubMed] [Google Scholar]

248. Roe D E, Braham P, Weinberg A, Roberts M C. Characterization of tetracycline resistance in Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol. 1995;10:227–232. [PubMed] [Google Scholar]

249. Roe D E, Weinberg A, Roberts M C. Characterization of erythromycin resistance in Campylobacter (Wolinella) rectus. Clin Infect Dis. 1995;20:S370–S371. [PubMed] [Google Scholar]

250. Rogalski W. Chemical modification of the tetracyclines. In: Hlavka J J, Boothe J H, editors. Handbook of experimental pharmacology. Vol. 78. Berlin, Germany: Springer-Verlag KG; 1985. pp. 179–316. [Google Scholar]

251. Ross J I, Eady E A, Cove J H, Cunliffe W J. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother. 1998;42:1702–1705. [PMC free article] [PubMed] [Google Scholar]

252. Rouch D A, Skurray R A. IS257 from Staphylococcus aureus: a member of an insertion sequence superfamily prevalent among Gram-positive and Gram-negative bacteria. Gene. 1989;76:195–205. [PubMed] [Google Scholar]

253. Rubin R A, Levy S B. Interdomain hybrid Tet proteins confer tetracycline resistance only when they are derived from closely related members of the tet gene family. J Bacteriol. 1991;173:4503–4509. [PMC free article] [PubMed] [Google Scholar]

254. Sabath L D. Current concepts: drug resistance of bacteria. N Engl J Med. 1969;280:91–94. [PubMed] [Google Scholar]

255. Sakaguchi R, Shishido K. Molecular cloning of a tetracycline-resistance determinant from Bacillus subtilis chromosomal DNA and its expression in Escherichia coli and B. subtilis. Biochim Biophys Acta. 1988;949:9–57. [PubMed] [Google Scholar]

256. Salyers A A, Shoemaker N B, Li L-Y. In the Driver's seat: the Bacteroides conjugative transposons and the elements they mobilize. J Bacteriol. 1995;177:5727–5731. [PMC free article] [PubMed] [Google Scholar]

257. Salyers A A, Shoemaker N B, Stevens A M, Li L-Y. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 1995;59:579–590. [PMC free article] [PubMed] [Google Scholar]

258. Sanchez L, Pan W, Vinas M, Nikaido H. The acrAB homology of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol. 1997;179:6855–6857. [PMC free article] [PubMed] [Google Scholar]

259. Sanchez-Pescador R, Brown J T, Roberts M, Urdea M S. Homology of the TetM with translational elongation factors: implications for potential modes of tetM conferred tetracycline resistance. Nucleic Acids Res. 1988;16:1218. [PMC free article] [PubMed] [Google Scholar]

260. Sangare L, Morrisset R, Ravaoarinoro M. In-vitro anti-chlamydial activities of free and liposomal tetracycline and doxycycline. J Med Microbiol. 1999;48:689–693. [PubMed] [Google Scholar]

261. Seppala H, Klaukka T, Vuopio-Varkila J, Muotiala A, Helenius H, Lager K, Huovinen P. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N Engl J Med. 1997;337:441–446. [PubMed] [Google Scholar]

262. Schnabel E L, Jones A L. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol. 1999;65:4898–4907. [PMC free article] [PubMed] [Google Scholar]

263. Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165:359–369. [PubMed] [Google Scholar]

264. Schwarz E, Regev-Yochay G. Primaquine as prophylaxis for malaria for nonimmune travelers: a comparison with mefloquine and doxycycline. Clin Infect Dis. 1999;29:1502–1506. [PubMed] [Google Scholar]

265. Schwarz S, Cardoso M, Wegener H C. Nucleotide sequence and phylogeny of tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob Agents Chemother. 1992;36:580–588. [PMC free article] [PubMed] [Google Scholar]

266. Schwarz S, Roberts M C, Werckenthin C, Pang Y, Lange C. Tetracycline resistance in Staphylococcus spp. from domestic and pet animals. Vet Microbiol. 1998;63:217–228. [PubMed] [Google Scholar]

267. Scott K P, Melville C M, Barbosa T M, Flint H J. Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Antimicrob Agents Chemother. 2000;44:775–777. [PMC free article] [PubMed] [Google Scholar]

268. Scott J R. Sex and the single circle: conjugative transposition. J Bacteriol. 1992;174:6005–6010. [PMC free article] [PubMed] [Google Scholar]

269. Sheridan R P, Chopra I. Origin of tetracycline efflux proteins: conclusions from nucleotide sequence analysis. Mol Microbiol. 1991;5:895–900. [PubMed] [Google Scholar]

270. Shonekan D, Handwerger S, Mildvan D. Comparative in-vitro activities of RP59500 (quinupristin/dalfopristin), CL 329,998, CL 331,002, trovafloxacin, clinafloxacin, teicoplanin and vancomycin against Gram-positive bacteria. J Antimicrob Chemother. 1997;39:405–409. [PubMed] [Google Scholar]

271. Shaw W V, Bouanchaud D H, Goldstein F W. Mechanism of transferable resistance to chloramphenicol in Haemophilus parainfluenzae. Antimicrob Agents Chemother. 1978;13:326–330. [PMC free article] [PubMed] [Google Scholar]

272. Showsh S A, Andrews R E., Jr Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid. 1992;28:213–224. [PubMed] [Google Scholar]

273. Sloan J, McMurry L M, Lyras D, Levy S B, Rood J I. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol. 1994;11:403–415. [PubMed] [Google Scholar]

274. Smidt H, Song D, van der Oost J, de Vos W M. Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants. J Bacteriol. 1999;181:6882–6888. [PMC free article] [PubMed] [Google Scholar]

275. Smilack J D. The tetracyclines. Mayo Clin Proc. 1999;74:727–729. [PubMed] [Google Scholar]

276. Smith H W, Crabb W E. The effect of the continuous administration of diets containing low levels of tetracyclines on the incidence of drug-resistant Bacterium coli in the faeces of pigs and chickens: the sensitivity of the Bacterium coli to other chemotherapeutic agents. Vet Rec. 1976;69:24–30. [Google Scholar]

277. Somani J, Bhullar V B, Workowski K A, Farshy C E, Black C M. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis. 2000;181:1420–1427. [PubMed] [Google Scholar]

278. Someya Y, Yamaguchi A, Sawai T. A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Antimicrob Agents Chemother. 1995;39:247–249. [PMC free article] [PubMed] [Google Scholar]

279. Someya Y, Kimura-Someya T, Yamaguchi A. Role of the charge interaction between Arg(70) and Asp(120) in the Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli. J Biol Chem. 2000;275:210–214. [PubMed] [Google Scholar]

280. Sorum H, Roberts M C, Crosa J H. Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida. Antimicrob Agents Chemother. 1992;36:611–615. [PMC free article] [PubMed] [Google Scholar]

281. Speer B S, Bedzyk L, Salyers A A. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J Bacteriol. 1991;173:176–183. [PMC free article] [PubMed] [Google Scholar]

282. Spies T, Laufs R, Riess F-C. Amplification of resistance genes in Haemophilus influenzae plasmids. J Bacteriol. 1983;155:839–846. [PMC free article] [PubMed] [Google Scholar]

283. Stasinopoulos S J, Farr G A, Bechhofer D H. Bacillus subtilis tetA(L) gene expression: evidence for regulation by translational reinitiation. Mol Microbiol. 1998;30:923–932. [PubMed] [Google Scholar]

284. Stockstad E L R, Jukes T H, Pierce J, Page A C, Franklin A L. The multiple nature of the animal protein factor. J Biol Chem. 1949;180:647–654. [PubMed] [Google Scholar]

285. Su Y A, He P, Clewell D B. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 1992;36:769–778. [PMC free article] [PubMed] [Google Scholar]

286. Sum P-E, Lee V J, Testa R T, Hlavka J J, Ellestad G A, Bloom J D, Gluzman Y, Tally F P. Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem. 1994;37:184–188. [PubMed] [Google Scholar]

287. Sum P E, Petersen P. Synthesis and structure-activity relationship of novel glycylcycline derivatives leading to the discovery of GAR-936. Bioorg Med Chem Lett. 1999;9:1459–1462. [PubMed] [Google Scholar]

288. Swann M M. Report of joint committee on the use of antibiotics in animal husbandry and veterinary medicine. Cmnd. 4190. London, United Kingdom: Her Majesty's Stationery Office; 1969. [Google Scholar]

289. Tamayo M, Sa-Leao R, Sanches I S, Castaneda E, de Lencastre H. Dissemination of a chloramphenicol-and tetracycline-resistant but penicillin-susceptible invasive clone of serotype 5 Streptococcus pneumoniae in Colombia. J Clin Microbiol. 1999;7:2337–2342. [PMC free article] [PubMed] [Google Scholar]

290. Tannock G W, Luchansky J B, Miller L, Connell H, Thode-Andersen S, Mercer A A, Kaenhammer T R. Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100–63. Plasmid. 1994;31:60–71. [PubMed] [Google Scholar]

291. Tauch A, Puhler A, Kalinowski J, Thierbach G. TetZ, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems. Plasmid. 2000;44:285–291. [PubMed] [Google Scholar]

292. Taylor D E, Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother. 1996;40:1–5. [PMC free article] [PubMed] [Google Scholar]

293. Taylor D E, Courvalin P. Mechanisms of antibiotic resistance in Campylobacter species. Antimicrob Agents Chemother. 1988;32:1107–1112. [PMC free article] [PubMed] [Google Scholar]

294. Taylor D E, Trieber C A, Trescher G, Bekkering M. Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M) Antimicrob Agents Chemother. 1998;42:59–64. [PMC free article] [PubMed] [Google Scholar]

295. Testa R T, Petersen P J, Jacobus N L, Sum P-E, Lee V J, Tally F P. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother. 1993;37:2270–2277. [PMC free article] [PubMed] [Google Scholar]

296. Threlfall E J, Frost J A, Ward L R, Rowe B. Epidemic in cattle and humans of Salmonella typhimurium DT104 with chromsomally integrated multiple drug resistance. Vet Rec. 1994;134:577. [PubMed] [Google Scholar]

297. Torres O R, Korman R Z, Zahler S A, Dunny G M. The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis. Mol Gen Genet. 1991;225:395–400. [PubMed] [Google Scholar]

298. Trieber C A, Burkhardt N, Nierhaus K H, Taylor D E. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol Chem. 1998;379:847–855. [PubMed] [Google Scholar]

299. Reference deleted.

300. Tymiak A A, Aklonis C, Bolgar M S, Kahle A D, Kirsch D R, O'Sullivan J, Porubcan M A, Principe P, Trejo W H, Ax H A, Wells J S, Andersen H H, Devasthale P V, Telikepalli H, Vander Velde D, Zou J-Y, Mitscher L A. Novel tetracycline glycosides active against tetracycline-resistant bacteria. J Org Chem. 1993;58:535–537. [Google Scholar]

301. Urquhart E, Addy M. Topical antimicrobials: new horizons for management of periodontal disease in general practice? Dent Update. 1995;1995(Apr.):104–111. [PubMed] [Google Scholar]

302. van den Bogert C, Kroon A M. Tissue distribution and effects on mitochondrial protein synthesis of tetracyclines after prolonged continuous intravenous administration to rats. Biochem Pharmacol. 1981;30:1706–1709. [PubMed] [Google Scholar]

303. van der Hulst R W M, Keller J J, Rauws E A J, Tytgat G N J. Treatment of Helicobacter pylori infection: a review of the world literature. Helicobacter. 1996;1:6–19. [PubMed] [Google Scholar]

304. van Klingeren B, van Embden J D A, Dessens-Kroon M. Plasmid-mediated chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1977;11:383–387. [PMC free article] [PubMed] [Google Scholar]

305. van Steenberghe D, Rosling B, Soder P-O, Landry R G, van der Velden U, Timmerman M F T, McCarthy E F, Vandenhoven G, Wouters C, Wilson M, Matthews J, Newman H N. A 15-month evaluation of the effects of repeated subgingival minocycline in chronic adult periodontitis. J Periodontol. 1999;70:657–667. [PubMed] [Google Scholar]

306. Wang Y, Taylor D E. A DNA sequence upstream of the tet(O) gene is required for full expression of tetracycline resistance. Antimicrob Agents Chemother. 1991;35:2020–2025. [PMC free article] [PubMed] [Google Scholar]

307. Wasteson Y, Hoie S, Roberts M C. Characterization of antibiotic resistance in Streptococcus suis. Vet Microbiol. 1994;41:41–49. [PubMed] [Google Scholar]

308. Watanabe T. Infectious heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963;27:87–115. [PMC free article] [PubMed] [Google Scholar]

309. Weinstein R A. Endemic emergence of cephalosporin-resistant enterobacter: relation to prior therapy. Infect Control. 1986;7:120–123. [PubMed] [Google Scholar]

310. Weiss W J, Jacobus N V, Petersen P J, Testa R T. Susceptibility of enterococci, methicillin-resistant Staphylococcus aureus and Streptococcus pneumoniae to the glycylcyclines. J Antimicrob Chemother. 1995;36:225–230. [PubMed] [Google Scholar]

310a. Werckenthin C, Schwarz S, Westh H. Structural alterations in the translational attenuator of constitutively expressed ermC genes. Antimicrob Agents Chemother. 1999;43:1681–1685. [PMC free article] [PubMed] [Google Scholar]

311. Wexler H M, Molitoris E, Finegold S M. In vitro activities of two new glycylcyclines, N,N-dimethylglycylamido derivatives of minocycline and 6-demethyl-6-deoxytetracycline, against 339 strains of anaerobic bacteria. Antimicrob Agents Chemother. 1994;38:2513–2515. [PMC free article] [PubMed] [Google Scholar]

312. Whittington W L, Roberts M C, Hale J, Holmes K K. Susceptibilities of Neisseria gonorrhoeae to the glycylcyclines. Antimicrob Agents Chemother. 1995;39:1864–1865. [PMC free article] [PubMed] [Google Scholar]

313. Williams D N. Tetracyclines. In: Gorbach S L, Bartlett J G, Blacklow N R, editors. Infectious diseases. Philadelphia, Pa: The W. B. Saunders Co.; 1992. pp. 211–214. [Google Scholar]

314. Winterscheid K K, Whittington W L, Roberts M C, Schwebke J R, Holmes K K. Decreased susceptibility to penicillin G and Tet M plasmids in genital and anorectal isolates of Neisseria meningitidis. Antimicrob Agents Chemother. 1994;38:1661–1663. [PMC free article] [PubMed] [Google Scholar]

315. Wise R, Andrews J M. In vitro activities of two glycylcyclines. Antimicrob Agents Chemother. 1994;38:1096–1102. [PMC free article] [PubMed] [Google Scholar]

316. Witte W. Medical consequences of antibiotic use in agriculture. Science. 1998;279:996–997. [PubMed] [Google Scholar]

317. Xia M, Pang Y, Roberts M C. Detection of two groups of 25.2 Mda Tet M plasmids by polymerase chain reaction of the downstream region. Mol Cell Probes. 1995;9:327–332. , 1995. [PubMed] [Google Scholar]

318. Yamaguchi A, Ono N, Akasaka T, Noumi T, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10. J Biol Chem. 1990;265:15525–15530. [PubMed] [Google Scholar]

319. Zhao J, Aoki T. Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol Immunol. 1992;36:1051–1060. [PubMed] [Google Scholar]

Page 2

Principal members of the tetracycline class

Chemical name Generic name Trade name Yr of discovery Status Therapeutic administration
7-Chlortetracycline Chlortetracycline Aureomycin 1948 Marketed Oral
5-Hydroxytetracycline Oxytetracycline Terramycin 1948 Marketed Oral and parenteral
Tetracycline Tetracycline Achromycin 1953 Marketed Oral
6-Demethyl-7-chlortetracycline Demethylchlortetracycline Declomycin 1957 Marketed Oral
2-N-Pyrrolidinomethyltetracycline Rolitetracycline Reverin 1958 Marketed Oral
2-N-Lysinomethyltetracycline Limecycline Tetralysal 1961 Marketed Oral and parenteral
N-Methylol-7-chlortetracycline Clomocycline Megaclor 1963 Marketed Oral
6-Methylene-5-hydroxytetracycline Methacycline Rondomycin 1965 Marketed Oral
6-Deoxy-5-hydroxytetracycline Doxycycline Vibramycin 1967 Marketed Oral and parenteral
7-Dimethylamino-6-demethyl-6-deoxytetracycline Minocycline Minocin 1972 Marketed Oral and parenteral
9-(t-butylglycylamido)-minocycline Tertiary-butylglycylamidominocycline Tigilcycline 1993 Phase II clinical trials