According to scientists, the basic principles of the scientific method should be seen as a ______.

A scientific theory is a structured explanation to explain a group of facts or phenomena in the natural world that often incorporates a scientific hypothesis and scientific laws. The scientific definition of a theory contrasts with the definition most people use in casual language.

"The way that scientists use the word 'theory' is a little different than how it is commonly used in the lay public," said Jaime Tanner, a professor of biology at Emerson College in Boston. "Most people use the word 'theory' to mean an idea or hunch that someone has, but in science the word 'theory' refers to the way that we interpret facts."

Related: 5 sci-fi concepts that are possible (in theory)

The process of becoming a scientific theory

Every scientific theory relies on the scientific method. A scientist may make an observation and devise a hypothesis to explain that observation, then design an experiment to test that hypothesis. If the hypothesis is shown to be incorrect, the scientist will develop a new hypothesis and begin the process again. If the hypothesis is supported by the results of the experiment, it will go on to be tested again. If the hypothesis isn't disproven or surpassed by a better explanation, the scientist may incorporate it into a larger theory that helps to explain the observed phenomenon and relates it to other phenomena, according to the Field Museum (opens in new tab)

A scientific theory is not the end result of the scientific method; theories can be proven or rejected, just like hypotheses. And theories are continually improved or modified as more information is gathered, so that the accuracy of the prediction becomes greater over time.

Theories are foundations for furthering scientific knowledge and for putting the information gathered to practical use. Scientists use theories to develop inventions or find a cure for a disease.

Furthermore, a scientific theory is the framework for observations and facts, Tanner said. Theories may change, or the way that they are interpreted may change, but the facts themselves don't change. Tanner likens theories to a basket in which scientists keep facts and observations that they find. The shape of that basket may change as the scientists learn more and include more facts. "For example, we have ample evidence of traits in populations becoming more or less common over time (evolution), so evolution is a fact, but the overarching theories about evolution, the way that we think all of the facts go together might change as new observations of evolution are made," Tanner told Live Science.

Characteristics of a good theory

The University of California, Berkeley (opens in new tab), defines a theory as "a broad, natural explanation for a wide range of phenomena. Theories are concise, coherent, systematic, predictive, and broadly applicable, often integrating and generalizing many hypotheses." 

According to Columbia University emeritus professor of philosophy Philip Kitcher, a good scientific theory has three characteristics. First, it has unity, which means it consists of a limited number of problem-solving strategies that can be applied to a wide range of scientific circumstances. Second, a good scientific theory leads to new questions and new areas of research. This means that a theory doesn't need to explain everything in order to be useful. And finally, a good theory is formed from a number of hypotheses that can be tested independently from the theory itself.

The difference between theories, facts and laws

Any scientific theory must be based on a careful and rational examination of the facts. Facts and theories are two different things. In the scientific method, there is a clear distinction between facts, which can be observed and/or measured, and theories, which are scientists' explanations and interpretations of the facts. 

Some think that theories become laws, but theories and laws have separate and distinct roles in the scientific method. A law is a description of an observed phenomenon in the natural world that holds true every time it is tested. It doesn't explain why something is true; it just states that it is true. A theory, on the other hand, explains observations that are gathered during the scientific process. So, while law and theory are part of the scientific process, they are two different aspects, according to the National Center for Science Education (opens in new tab)

A good example of the difference between a theory and a law is the case of Gregor Mendel. In his research, Mendel discovered that two separate genetic traits would appear independently of each other in different offspring. "Yet, Mendel knew nothing of DNA or chromosomes. It wasn't until a century later that scientists discovered DNA and chromosomes — the biochemical explanation of Mendel's laws," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "It was only then that scientists, such as T.H. Morgan working with fruit flies, explained the Law of Independent Assortment using the theory of chromosomal inheritance. Still today, this is the universally accepted explanation [theory] for Mendel's Law."

Additional resources

Bibliography

Kenneth Angielczyk, "What Do We Mean by "Theory" in Science?" Field Museum, March 10, 2017. https://www.fieldmuseum.org/blog/what-do-we-mean-theory-science (opens in new tab)

University of California, Berkeley, "Science at multiple levels." https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19 (opens in new tab) 

Philip Kitcher, "Abusing Science: The Case Against Creationism," MIT Press, 1982. 

National Center for Science Education, "Definitions of Fact, Theory, and Law in Scientific Work," March 16, 2016 https://ncse.ngo/definitions-fact-theory-and-law-scientific-work (opens in new tab) 

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary. True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley. Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

The scientific method

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory.

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

According to scientists, the basic principles of the scientific method should be seen as a ______.

(Image credit: Shutterstock) (opens in new tab)

The steps of the scientific method go something like this, according to Highline College:

  1. Make an observation or observations.
  2. Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  3. Test the hypothesis and predictions in an experiment that can be reproduced.
  4. Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  5. Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University (opens in new tab). Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning. Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara (opens in new tab).
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica (opens in new tab).

Hypothesis, theory and law

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato (opens in new tab). One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

A brief history of science

According to scientists, the basic principles of the scientific method should be seen as a ______.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac. (Image credit: Oxford Science Archive/Print Collector/Getty Images) (opens in new tab)

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system, which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. (opens in new tab) His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry, developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays, while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein, who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, "The Electrodynamics of Moving Bodies (opens in new tab)," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as "The Foundation of the General Theory of Relativity," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine, which reduced the incidence of polio in the United States by nearly 90%, according to Britannica. The following year, James D. Watson and Francis Crick discovered the structure of DNA, which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute.

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute.

Additional resources

Bibliography

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​https://undsci.berkeley.edu/article/0_0_0/intro_01 

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm 

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html 

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045 

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group 

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml 

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/ 

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/biography/Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone 

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What 

‌Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.