A nurse is monitoring a client who has acute kidney injury. which of the following laboratory

1. KDIGO Clinical Practice Guideline for Acute Kidney Injury Section 2: AKI Definition. Kidney Int Suppl. 2012;2:19–36. [Google Scholar]

2. KDIGO Clinical Practice Guideline for Acute Kidney Injury Section 3: Prevention and Treatment of AKI. Kidney Int Suppl. 2012;2:37–68. [Google Scholar]

3. Chawla L.S., Bellomo R., Bihorac A. Acute kidney disease and renal recovery: guideline report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Clin J Am Soc Nephrol. 2017;13:241–257. [PubMed] [Google Scholar]

4. Chawla L.S., Bellomo R., Bihorac A. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Worgroup. Nat Rev Nephrol. 2017;13:241–257. [PubMed] [Google Scholar]

5. Mehta R.L., Burdmann E.A., Cerda J. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. Lancet (London, England) 2016;387:2017–2025. [PubMed] [Google Scholar]

6. Kellum J.A., Bellomo R., Ronco C. Acute Dialysis Quality Initiative (ADQI): methodology. Int J Artif Organs. 2008;31:90–93. [PubMed] [Google Scholar]

7. Bouchard J., Soroko S.B., Chertow G.M. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76:422–427. [PubMed] [Google Scholar]

8. Osman D., Ridel C., Ray P. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–68. [PubMed] [Google Scholar]

9. Feissel M., Teboul J.L., Merlani P. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–999. [PubMed] [Google Scholar]

10. Gruenewald M., Meybohm P., Koerner S. Dynamic and volumetric variables of fluid responsiveness fail during immediate postresuscitation period. Crit Care Med. 2011;39:1953–1959. [PubMed] [Google Scholar]

11. Finfer S., Vincent J.L. Critical care–an all-encompassing specialty. N Engl J Med. 2013;369:669–670. [PubMed] [Google Scholar]

12. Starling E.H. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–326. [PMC free article] [PubMed] [Google Scholar]

13. Varadhan K.K., Lobo D.N. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc. 2010;69:488–498. [PubMed] [Google Scholar]

14. Perner A., Haase N., Guttormsen A.B. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367:124–134. [PubMed] [Google Scholar]

15. Myburgh J.A., Finfer S., Bellomo R. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–1911. [PubMed] [Google Scholar]

16. Quinlan G.J., Martin G.S., Evans T.W. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41:1211–1219. [PubMed] [Google Scholar]

17. Weil M.H., Henning R.J., Puri V.K. Colloid oncotic pressure: clinical significance. Crit Care Med. 1979;7:113–116. [PubMed] [Google Scholar]

18. Sudlow G., Birkett D.J., Wade D.N. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975;11:824–832. [PubMed] [Google Scholar]

19. King T.P. On the sulfhydryl group of human plasma albumin. J Biol Chem. 1961;236:PC5. [PubMed] [Google Scholar]

20. Quinlan G.J., Margarson M.P., Mumby S. Administration of albumin to patients with sepsis syndrome: a possible beneficial role in plasma thiol repletion. Clin Sci (Lond) 1998;95:459–465. [PubMed] [Google Scholar]

21. Finfer S., Bellomo R., Boyce N. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–2256. [PubMed] [Google Scholar]

22. Caironi P., Tognoni G., Masson S. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–1421. [PubMed] [Google Scholar]

23. Wills B.A., Nguyen M.D., Ha T.L. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med. 2005;353:877–889. [PubMed] [Google Scholar]

24. Hadimioglu N., Saadawy I., Saglam T. The effect of different crystalloid solutions on acid-base balance and early kidney function after kidney transplantation. Anesth Analg. 2008;107:264–269. [PubMed] [Google Scholar]

25. Hasman H., Cinar O., Uzun A. A randomized clinical trial comparing the effect of rapidly infused crystalloids on acid-base status in dehydrated patients in the emergency department. Int J Med Sci. 2012;9:59–64. [PMC free article] [PubMed] [Google Scholar]

26. Khajavi M.R., Etezadi F., Moharari R.S. Effects of normal saline vs. lactated ringer's during renal transplantation. Ren Fail. 2008;30:535–539. [PubMed] [Google Scholar]

27. Wilcox C.S. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–735. [PMC free article] [PubMed] [Google Scholar]

28. Shaw A.D., Bagshaw S.M., Goldstein S.L. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255:821–829. [PubMed] [Google Scholar]

29. Yunos N.M., Bellomo R., Hegarty C. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–1572. [PubMed] [Google Scholar]

30. McCluskey S.A., Karkouti K., Wijeysundera D. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117:412–421. [PubMed] [Google Scholar]

31. Young P., Bailey M., Beasley R. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314:1701–1710. [PubMed] [Google Scholar]

32. Rivers E., Nguyen B., Havstad S. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. [PubMed] [Google Scholar]

33. Dellinger R.P., Levy M.M., Carlet J.M. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. [PubMed] [Google Scholar]

34. Pro C.I., Yealy D.M., Kellum J.A. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–1693. [PMC free article] [PubMed] [Google Scholar]

35. ARISE Investigators; ANZICS Clinical Trials Group. Peake S.L. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–1506. [PubMed] [Google Scholar]

36. Mouncey P.R., Osborn T.M., Power G.S. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–1311. [PubMed] [Google Scholar]

37. Ranjit S., Kissoon N., Gandhi D. Early differentiation between dengue and septic shock by comparison of admission hemodynamic, clinical, and laboratory variables: a pilot study. Pediatr Emerg Care. 2007;23:368–375. [PubMed] [Google Scholar]

38. Maitland K., Kiguli S., Opoka R.O. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–2495. [PubMed] [Google Scholar]

39. Goldstein S.L., Somers M.J., Baum M.A. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67:653–658. [PubMed] [Google Scholar]

40. Foland J.A., Fortenberry J.D., Warshaw B.L. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32:1771–1776. [PubMed] [Google Scholar]

41. Gillespie R.S., Seidel K., Symons J.M. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19:1394–1399. [PubMed] [Google Scholar]

42. Hayes L.W., Oster R.A., Tofil N.M. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24:394–400. [PubMed] [Google Scholar]

43. Michael M., Kuehnle I., Goldstein S.L. Fluid overload and acute renal failure in pediatric stem cell transplant patients. Pediatr Nephrol. 2004;19:91–95. [PubMed] [Google Scholar]

44. Selewski D.T., Cornell T.T., Blatt N.B. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med. 2012;40:2694–2699. [PMC free article] [PubMed] [Google Scholar]

45. de Galasso L., Emma F., Picca S. Continuous renal replacement therapy in children: fluid overload does not always predict mortality. Pediatr Nephrol. 2016;31:651–659. [PubMed] [Google Scholar]

46. De Backer D., Biston P., Devriendt J. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–789. [PubMed] [Google Scholar]

47. Delmas A., Leone M., Rousseau S. Clinical review: vasopressin and terlipressin in septic shock patients. Crit Care. 2005;9:212–222. [PMC free article] [PubMed] [Google Scholar]

48. Russell J.A., Walley K.R., Singer J. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–887. [PubMed] [Google Scholar]

49. Gordon A.C., Russell J.A., Walley K.R. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36:83–91. [PubMed] [Google Scholar]

50. Dellinger R.P., Levy M.M., Rhodes A. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637. [PubMed] [Google Scholar]

51. LeDoux D., Astiz M.E., Carpati C.M. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–2732. [PubMed] [Google Scholar]

52. Dunser M.W., Takala J., Ulmer H. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;35:1225–1233. [PubMed] [Google Scholar]

53. Asfar P., Meziani F., Hamel J.F. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–1593. [PubMed] [Google Scholar]

54. Salmasi V., Maheshwari K., Yang Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery. Anesthesiology. 2017;126:47–65. [PubMed] [Google Scholar]

55. Sun L.Y., Wijeysundera D.N., Tait G.A., Beattie W.S. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123:515–523. [PubMed] [Google Scholar]

56. Onuigbo M.A.C., Agbasi N. Intraoperative hypotension - a negalected causative factor in hospital-acquired acute kidney injury;a Mayo Clinic Health System experience revisited. J Renal Inj Prev. 2015;4:61–67. [PMC free article] [PubMed] [Google Scholar]

57. Mehta R.L., McDonald B., Gabbai F. Nephrology consultation in acute renal failure: does timing matter? Am J Med. 2002;113:456–461. [PubMed] [Google Scholar]

58. Costa e Silva V.T., Liano F., Muriel A. Nephrology referral and outcomes in critically ill acute kidney injury patients. PLoS One. 2013;8:e70482. [PMC free article] [PubMed] [Google Scholar]

59. Ponce D., Zorzenon Cde P., dos Santos N.Y. Early nephrology consultation can have an impact on outcome of acute kidney injury patients. Nephrol Dial Transplant. 2011;26:3202–3206. [PubMed] [Google Scholar]

60. Meier P., Bonfils R.M., Vogt B. Referral patterns and outcomes in noncritically ill patients with hospital-acquired acute kidney injury. Clin J Am Soc Nephrol. 2011;6:2215–2225. [PMC free article] [PubMed] [Google Scholar]

61. Kaufman J., Dhakal M., Patel B. Community-acquired acute renal failure. Am J Kidney Dis. 1991;17:191–198. [PubMed] [Google Scholar]

62. Wu T.Y., Jen M.H., Bottle A. Ten-year trends in hospital admissions for adverse drug reactions in England 1999-2009. J R Soc Med. 2010;103:239–250. [PMC free article] [PubMed] [Google Scholar]

63. Lameire N., Van Biesen W., Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006;2:364–377. [PubMed] [Google Scholar]

64. Bagshaw S.M., George C., Bellomo R. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care. 2007;11:R68. [PMC free article] [PubMed] [Google Scholar]

65. Mizock B.A. The multiple organ dysfunction syndrome. Dis Mon. 2009;55:476–526. [PubMed] [Google Scholar]

66. Proulx F., Joyal J.S., Mariscalco M.M. The pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2009;10:12–22. [PubMed] [Google Scholar]

67. Lewis S.J., Mueller B.A. Antibiotic dosing in patients with acute kidney injury: “enough but not too much” J Intensive Care Med. 2016;31:164–176. [PubMed] [Google Scholar]

68. Eyler R.F., Mueller B.A. Medscape. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7:226–235. [PubMed] [Google Scholar]

69. Mehta R.L., Pascual M.T., Soroko S. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–1621. [PubMed] [Google Scholar]

70. KDIGO Clinical Practice Guideline for Acute Kidney Injury Section 4: Contrast-induced AKI. Kidney Int Suppl. 2012;2:69–88. [PMC free article] [PubMed] [Google Scholar]

71. Cosgrove S.E., Vigliani G.A., Fowler V.G., Jr. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis. 2009;48:713–721. [PubMed] [Google Scholar]

72. Falagas M.E., Matthaiou D.K., Bliziotis I.A. The role of aminoglycosides in combination with a beta-lactam for the treatment of bacterial endocarditis: a meta-analysis of comparative trials. J Antimicrob Chemother. 2006;57:639–647. [PubMed] [Google Scholar]

73. Falagas M.E., Matthaiou D.K., Karveli E.A. Meta-analysis: randomized controlled trials of clindamycin/aminoglycoside vs. beta-lactam monotherapy for the treatment of intra-abdominal infections. Aliment Pharmacol Ther. 2007;25:537–556. [PubMed] [Google Scholar]

74. Glasmacher A., von Lilienfeld-Toal M., Schulte S. An evidence-based evaluation of important aspects of empirical antibiotic therapy in febrile neutropenic patients. Clin Microbiol Infect. 2005;11 Suppl 5:17–23. [PubMed] [Google Scholar]

75. Paul M., Benuri-Silbiger I., Soares-Weiser K. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ. 2004;328:668. [PMC free article] [PubMed] [Google Scholar]

76. James M., Bouchard J., Ho J. Canadian Society of Nephrology commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:673–685. [PubMed] [Google Scholar]

77. Ad-hoc Working Group of ERBP. Fliser D., Laville M. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27:4263–4272. [PMC free article] [PubMed] [Google Scholar]

78. Blakeman T., Harding S., O'Donoghue D. Acute kidney injury in the community: why primary care has an important role. Br J Gen Pract. 2013;63:173–174. [PMC free article] [PubMed] [Google Scholar]

79. Bouchard J., Macedo E., Soroko S. Comparison of methods for estimating glomerular filtration rate in critically ill patients with acute kidney injury. Nephrol Dial Transplant. 2010;25:102–107. [PMC free article] [PubMed] [Google Scholar]

80. Jelliffe R. Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol. 2002;22:320–324. [PubMed] [Google Scholar]

81. Brater D.C. ADIS Health Science Press; Balgowlah, Australia: 1983. Drug Use in Renal Disease. [Google Scholar]

82. Macedo E., Bouchard J., Soroko S.H. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82. [PMC free article] [PubMed] [Google Scholar]

83. Roberts D.M., Roberts J.A., Roberts M.S. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med. 2012;40:1523–1528. [PubMed] [Google Scholar]

84. Lanese D.M., Alfrey P.S., Molitoris B.A. Markedly increased clearance of vancomycin during hemodialysis using polysulfone dialyzers. Kidney Int. 1989;35:1409–1412. [PubMed] [Google Scholar]

85. Barth R.H., DeVincenzo N. Use of vancomycin in high-flux hemodialysis: experience with 130 courses of therapy. Kidney Int. 1996;50:929–936. [PubMed] [Google Scholar]

86. Hager B., Betschart M., Krapf R. Effect of postoperative intravenous loop diuretic on renal function after major surgery. Schweiz Med Wochenschr. 1996;126:666–673. [PubMed] [Google Scholar]

87. Lassnigg A., Donner E., Grubhofer G. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11:97–104. [PubMed] [Google Scholar]

88. Mahesh B., Yim B., Robson D. Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. Eur J Cardiothorac Surg. 2008;33:370–376. [PubMed] [Google Scholar]

89. Ho K.M., Power B.M. Benefits and risks of furosemide in acute kidney injury. Anaesthesia. 2010;65:283–293. [PubMed] [Google Scholar]

90. Cantarovich F., Fernandez J.C., Locatelli A. Frusemide in high doses in the treatment of acute renal failure. Postgrad Med J. 1971;47 Suppl:13–17. [PubMed] [Google Scholar]

91. Letter: high-dose frusemide in renal failure. BMJ. 1974;2:278–279. [PMC free article] [PubMed] [Google Scholar]

92. Kleinknecht D., Ganeval D., Gonzalez-Duque L.A. Furosemide in acute oliguric renal failure. A controlled trial. Nephron. 1976;17:51–58. [PubMed] [Google Scholar]

93. Brown C.B., Ogg C.S., Cameron J.S. High dose frusemide in acute renal failure: a controlled trial. Clin Nephrol. 1981;15:90–96. [PubMed] [Google Scholar]

94. Shilliday I.R., Quinn K.J., Allison M.E. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12:2592–2596. [PubMed] [Google Scholar]

95. Cantarovich F., Rangoonwala B., Lorenz H. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am J Kidney Dis. 2004;44:402–409. [PubMed] [Google Scholar]

96. van der Voort P.H., Boerma E.C., Koopmans M. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit Care Med. 2009;37:533–538. [PubMed] [Google Scholar]

97. Ho K.M., Sheridan D.J. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333:420. [PMC free article] [PubMed] [Google Scholar]

98. Lapi F., Azoulay L., Yin H. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case-control study. BMJ. 2013;346:e8525. [PMC free article] [PubMed] [Google Scholar]

99. Chawla L.S., Davison D.L., Brasha-Mitchell E. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17:R207. [PMC free article] [PubMed] [Google Scholar]

100. Koyner J.L., Davison D.L., Brasha-Mitchell E. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26:2023–2031. [PMC free article] [PubMed] [Google Scholar]

101. Fouque D., Kalantar-Zadeh K., Kopple J. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–398. [PubMed] [Google Scholar]

102. Fiaccadori E., Lombardi M., Leonardi S. Prevalence and clinical outcome associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol. 1999;10:581–593. [PubMed] [Google Scholar]

103. Fiaccadori E., Cremaschi E., Regolisti G. Nutritional assessment and delivery in renal replacement therapy patients. Semin Dial. 2011;24:169–175. [PubMed] [Google Scholar]

104. Kritmetapak K., Peerapornratana S., Srisawat N. The impact of macro−and micronutrients on predicting outcomes of critically ill patients requiring continuous renal replacement therapy. PLoS One. 2016;11:e0156634. [PMC free article] [PubMed] [Google Scholar]

105. Fiaccadori E., Maggiore U., Cabassi A. Nutritional evaluation and management of AKI patients. J Ren Nutr. 2013;23:255–258. [PubMed] [Google Scholar]

106. Braunschweig C.L., Levy P., Sheean P.M. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001;74:534–542. [PubMed] [Google Scholar]

107. Gramlich L., Kichian K., Pinilla J. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20:843–848. [PubMed] [Google Scholar]

108. Peter J.V., Moran J.L., Phillips-Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005;33:213–220. discussion 260–211. [PubMed] [Google Scholar]

109. Simpson F., Doig G.S. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med. 2005;31:12–23. [PubMed] [Google Scholar]

110. Casaer M.P., Mesotten D., Hermans G. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–517. [PubMed] [Google Scholar]

111. Heyland D.K., Dhaliwal R., Drover J.W. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:355–373. [PubMed] [Google Scholar]

112. Singer P., Berger M.M., Van den Berghe G. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28:387–400. [PubMed] [Google Scholar]

113. Martindale R.G., McClave S.A., Vanek V.W. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care. Med. 2009;37:1757–1761. [PubMed] [Google Scholar]

114. Scheinkestel C.D., Kar L., Marshall K. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition. 2003;19:909–916. [PubMed] [Google Scholar]

115. Fiaccadori E., Maggiore U., Clima B. Incidence, risk factors, and prognosis of gastrointestinal hemorrhage complicating acute renal failure. Kidney Int. 2001;59:1510–1519. [PubMed] [Google Scholar]

116. Metnitz P.G., Krenn C.G., Steltzer H. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30:2051–2058. [PubMed] [Google Scholar]

117. Fiaccadori E., Maggiore U., Giacosa R. Enteral nutrition in patients with acute renal failure. Kidney Int. 2004;65:999–1008. [PubMed] [Google Scholar]

118. Barnert J., Dumitrascu D., Neeser G. Gastric emptying of a liquid meal in intensive care unit patients. Gastroenterology. 1998;114:A865. [Google Scholar]

119. Marik P.E., Zaloga G.P. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29:2264–2270. [PubMed] [Google Scholar]

120. Doig G.S., Heighes P.T., Simpson F. Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury. 2011;42:50–56. [PubMed] [Google Scholar]

121. Bost R.B., Tjan D.H., van Zanten A.R. Timing of (supplemental) parenteral nutrition in critically ill patients: a systematic review. Ann Intensive Care. 2014;4:31. [PMC free article] [PubMed] [Google Scholar]

122. Kopple J.D. McCollum Award Lecture, 1996: protein-energy malnutrition in maintenance dialysis patients. Am J Clin Nutr. 1997;65:1544–1557. [PubMed] [Google Scholar]

123. Druml W., Mitch W.E. Metabolic abnormalities in acute renal failure. Semin Dial. 1996;9:484–490. [Google Scholar]

124. Schneeweiss B., Graninger W., Stockenhuber F. Energy metabolism in acute and chronic renal failure. Am J Clin Nutr. 1990;52:596–601. [PubMed] [Google Scholar]

125. Investigators N.-S.S., Finfer S., Liu B. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–1118. [PubMed] [Google Scholar]

126. Fiaccadori E., Sabatino A., Morabito S. Hyper/hypoglycemia and acute kidney injury in critically ill patients. Clin Nutr. 2016;35:317–321. [PubMed] [Google Scholar]

127. Macias W.L., Alaka K.J., Murphy M.H. Impact of the nutritional regimen on protein catabolism and nitrogen balance in patients with acute renal failure. JPEN J Parenter Enteral. Nutr. 1996;20:56–62. [PubMed] [Google Scholar]

128. Fiaccadori E., Maggiore U., Rotelli C. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study. Nephrol Dial Transplant. 2005;20:1976–1980. [PubMed] [Google Scholar]

129. Chima C.S., Meyer L., Hummell A.C. Protein catabolic rate in patients with acute renal failure on continuous arteriovenous hemofiltration and total parenteral nutrition. J Am Soc Nephrol. 1993;3:1516–1521. [PubMed] [Google Scholar]

130. Leblanc M., Garred L.J., Cardinal J. Catabolism in critical illness: estimation from urea nitrogen appearance and creatinine production during continuous renal replacement therapy. Am J Kidney Dis. 1998;32:444–453. [PubMed] [Google Scholar]

131. Salahudeen A.K., Kumar V., Madan N. Sustained low efficiency dialysis in the continuous mode (C-SLED): dialysis efficacy, clinical outcomes, and survival predictors in critically ill cancer patients. Clin J Am Soc Nephrol. 2009;4:1338–1346. [PMC free article] [PubMed] [Google Scholar]


Page 2

Fluid bolus: a rapid infusion to correct hypotensive shock. It typically includes the infusion of at least 500 ml over a maximum of 15 min
Fluid challenge: 100–200 ml over 5–10 min with reassessment to optimize tissue perfusion
Fluid infusion: continuous delivery of i.v. fluids to maintain homeostasis, replace losses, or prevent organ injury (e.g., prehydration before operation to prevent intraoperative hypotension or for contrast nephropathy)
Maintenance: fluid administration for the provision of fluids for patients who cannot meet their needs by oral route. This should be titrated to patient need and context, and should include replacement of ongoing losses. In a patient without ongoing losses, this should probably be no more than 1–2 m/kg per hour
Daily fluid balance: daily sum of all intakes and outputs
Cumulative fluid balance: sum total of fluid accumulation over a set period of time
Fluid overload: cumulative fluid balance expressed as a proportion of baseline body weight. A value of 10% is associated with adverse outcomes
Response: Achieving hemodynamic goal and/or improvement of UOP: >0.5 ml/kg per hour
Persistent AKI is characterized by the continuance of AKI by creatinine or urine output criteria (defined by KDIGO criteria) beyond 48 hours from onset.
Complete reversal of AKI by KDIGO criteria within 48 hours of the onset characterizes rapid reversal of AKI
AKD is defined as a condition wherein AKI Stage Ia or greater criteria is present 7 days (or more) after an exposure.a AKD that persists beyond 90 days is then considered CKD